

NASA/TM-2014-218555

Implementation and Validation of a Two-Tier Light-

Weight Method for Securing Embedded Controllers
Securing the Raspberry Pi as a Development Platform

Ethan G. Ganzy

The Universities Space Research Association

Johnson Space Center, Houston, Texas

September 2014

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space

science. The NASA scientific and technical

information (STI) program plays a key part in

helping NASA maintain this important role.

The NASA STI program operates under the

auspices of the Agency Chief Information

Officer. It collects, organizes, provides for

archiving, and disseminates NASA’s STI. The

NASA STI program provides access to the NASA

Aeronautics and Space Database and its public

interface, the NASA Technical Reports Server,

thus providing one of the largest collections of

aeronautical and space science STI in the world.

Results are published in both non-NASA channels

and by NASA in the NASA STI Report Series,

which includes the following report types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA Programs and include extensive data

or theoretical analysis. Includes compila-

tions of significant scientific and technical

data and information deemed to be of

continuing reference value. NASA counter-

part of peer-reviewed formal professional

papers but has less stringent limitations on

manuscript length and extent of graphic

presentations.

 TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain

minimal annotation. Does not contain

extensive analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

 CONFERENCE PUBLICATION.

Collected papers from scientific and

technical conferences, symposia, seminars,

or other meetings sponsored or

co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

 TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing

and publishing research results, distributing

specialized research announcements and feeds,

providing information desk and personal search

support, and enabling data exchange services.

For more information about the NASA STI

program, see the following:

 Access the NASA STI program home page

at http://www.sti.nasa.gov

 E-mail your question to help@sti.nasa.gov

 Fax your question to the NASA STI

Information Desk at 443-757-5803

 Phone the NASA STI Information Desk at

443-757-5802

 Write to:

STI Information Desk

NASA Center for AeroSpace Information

7115 Standard Drive

Hanover, MD 21076-1320

NASA/TM-2014-218555

Implementation and Validation of a Two-Tier Light-

Weight Method for Securing Embedded Controllers
Securing the Raspberry Pi as a Development Platform

Ethan G. Ganzy

The Universities Space Research Association

Johnson Space Center, Houston, Texas

September 2014

Acknowledgments

I would like to thank those at NASA Johnson Space Center, and especially EV8, a Branch of the

AVIONIC SYSTEMS DIVISION (EV) responsible for assuring system level performance integrity

and ensuring interface compatibility of: Communications and tracking; Command and data

handling; Instrumentation systems’ and Provides RF spectrum management analysis. In

particular, my mentor Chatwin Lansdowne who chose me for this experience and allowed me to

undertake this research endeavor.

Available from:

NASA Center for AeroSpace Information National Technical Information Service

7121 Standard Drive 5285 Port Royal Road

Hanover, MD 21076-1320 Springfield, VA 22161

This report is also available in electronic form at http://ston.jsc.nasa.gov/collections/TRS

1

Abstract

Protecting information and equipment at NASA is an area of increasing concern, after a GAO

report in February (see also 2009), and an Inspector General release in March. Supervisory,

Control and Data Acquisition (SCADA) systems are especially vulnerable because these

systems have lacked standards, use embedded controllers with little computational power and

informal software, are connected to physical processes, have few operators, and are

increasingly also being connected to corporate networks.

The opportunity exists with IEEE 1877 to “build in” durable, scalable, effective security features.

As expressed in the CIO’s 2011 strategic plan, Goal 2, the standard interface needs standard

security features that can support a variety of standards-based or proprietary architectures and

be flexible enough to enable a response if some of these standard features are compromised,

while supporting rather than interfering with an automated operations where one or a few

operator(s) control many networked modules in a secure way. Similar themes are expressed in

the ISA technical report TR-99.00.02.

An approach was developed during the Summer of 2013 which remained to be validated in one

of the test beds. The goal was to implement and evaluate approaches to both server-side

security and client-side security, and tools for interacting with the interface such as browser

plug-ins. The approaches developed may be refined as a result of this work.

2

1. INTRODUCTION

The National Aeronautics and Space Administration (NASA) faced with increasing budget cuts

has sought shared development utilizing existing Commercial Off-The-Shelf (COTS)

opportunities. An area that was explored for such cost considerations was the test orchestration

and automation efforts at Johnson Space Center, Houston, Texas. The Integrated Power and

Avionics System (iPAS), is one such test bed that is utilized as an evaluation environment for

hardware and software geared towards specific missions. The environment uses a common

interface framework, the mREST software developed by METECS to collect data from tests,

simulations, hardware and monitoring applications. The software is a derivative of the existing

Representational State Transfer (REST), a common application programming interface (API) on

the internet.

REST is an architectural style that uses identification of resources; manipulation of resources

through representations; self-descriptive messages; and, hypermedia as the engine of

application state, to build distributed systems that are scalable and resilient to change. REST is

utilized for designing networked applications. The idea is that, rather than using complex

mechanisms such as CORBA, RPC or SOAP to connect between machines, simple HTTP is

used to make calls between machines.

The standard, currently in the working group phase, will be published in the proposed IEEE

Standard P1877. The definitions how the proposed system will work and the interaction

amongst the devices will be specified in P1877, Test Orchestration Interface. The security

section of the working standard is merely a suggestion at this point and further development is

needed.

Due to constraints of the Government furlough and limited resources, the initial project of

implementation and validation of the mREST code was restructured to address security

concerns centered on the Raspberry Pi as a Logical System Element (LSE). The primary

concern of the validation efforts was the review of existing suggestions regarding security and

ease of management in the LSE. Security standards were evaluated and tested in the lab setup

which consisted of several Raspberry Pi’s behind NASA’s external firewall and protected with an

individual router. A variety of encryption algorithms were explored and tested to document

system performance on the LSE. Since the device would be accessed in the future from an

external source, security was addressed keeping in mind simplicity of operation and key

management.

3

2. SYSTEM COMPONENTS AND SETUP

A. The Raspberry Pi

The Raspberry Pi Model B was utilized as a demonstrator LSE. Central to the device is a

Broadcom BCM2835 system-on-chip processor running at 700MHz, with a VideoCore IV GPU

running at 250MHz. A single 256MB module of Hynix LPDDR memory running at 400MHz

provides RAM for both the CPU and GPU, with the typical split leaving around 186MB of

memory available for the user.

The Raspberry Pi always needs to boot off of an SD card loaded with an operating system (OS)

disk image. There are many OS versions offered for the Raspberry Pi, however, for this

execution, Raspbian “Wheezy” was chosen as the OS. Configuration of a Raspberry Pi as a

webserver is a relatively straightforward process with a routine establishment of a LAMP

environment. It is termed a LAMP server which is one of the most common configuration for

webservers which stands for:

 Linux – operating system

 Apache – webserver (http) software

 Mysql – database server

 PHP or Perl – programming languages

Configuration is done at the command line. This provides the ability and advantage of remotely

managing and installing the server. It also means that the computer can spend less processor

time drawing a GUI.

Since Raspbian is Debian based, you need to install the following packages:

 php-xml-parser

 php5-common

 php5-cli

 php5-dev

 php5-mysqlnd

 php5-pgsql

 php5-sqlite

 apache2

 libapache2-mod-dnssd

Before installing these packages, make sure that your definitions are up to date:

Become root and run the following:

root prompt#> apt-get update

4

Then:

root prompt#> apt-get install php-xml-parser php5-common php5-cli php5-dev php5-

mysqlnd php5-pgsql php5-sqlite apache2 libapache2-mod-dnssd

The install is interactive and will most likely pick up some other dependent packages.

With dependent packages installed, a copy of mREST was placed on the Raspberry Pi. For

purposes of this implementation and validation, the TFDM was not available. Installation

instructions to copy the mrest-3.1.2.tgz archive somewhere on the Pi are included for future

expansion of the Raspberry Pi as an LSE.

The mREST package is copied to a unique directory on the Pi. From that directory, run the

following command (you may or may not need to be root depending on where you are in the file

system):

 root prompt#> zcat mrest-3.1.2.tgz | tar xvf -

This will create the mrest-3.1.2 directory. Contained within this directory are limited example

configuration files for apache and php. Since Rasbian is a Debian based distribution, selection

of the Ubuntu samples are warranted.

For Apache:
<path to mrest-3.1.2 directory>/mrm/config/system/samples/ubuntu/apache2.conf
Copy this file to /etc/apache2
Document the location of DocumentRoot locations for the Virtual hosts.

For PHP:
<path to mrest-3.1.2 directory>/mrm/config/system/samples/php.ini
Copy this file to /etc/php5/cli/php.ini
Document the library path in this file. You should be able to run a php script from the

command line. If the php script is unable to run because of an error locating a library, check this
file and adjust the path accordingly (or install the missing library if it is not installed).

To manually start apache, issue the following command as root:

 root prompt#> /etc/init.d/apache2 start

To have apache as the web server start at boot, issue the following command as root:

 root prompt#> update-rc.d apache2 defaults

B. Test Flow and Data Manager

The Test Flow and Data Manager (TFDM) is the primary system manager that was envisioned

to be used in testing. The system currently runs on Fedora Linux and is designed to provide

overall coordination and control of the requests sent to individual LSE. These requests and

responses are handled via a standard web browser. Functioning as a webserver, it will allow

5

any authorized computer to connect to the TFDM to monitor or initiate tests in cooperation with

the LSE devices.

C. Desktop System Manager

For the purpose of testing a standard desktop PC was utilized as a system manager.

Connections to the Raspberry Pi were established through the Command Line Interface utilizing

SSH as well as through the web browser when accessing the Raspberry Pi as a web server.

3. INITIAL CONSIDERATIONS

Confidentiality, Integrity, and Availability (CIA) is a model designed to guide policies for

information security within an organization. In this context, confidentiality is a set of rules that

limits access to information, integrity is the assurance that the information is trustworthy and

accurate, and availability is a guarantee of ready access to the information by authorized

people. Judgments and considerations regarding ease of use, key length and system

management were all taken into account in the final recommendations.

A. Requirements

Focusing on the security of the Raspberry Pi, there were several requirements highlighted in the

initial design for the LSEs.1 Those directly applicable to the pi environment were:

 Must be able to accommodate LSEs with limited hardware resources.

 The system must be fairly automated. It shall be designed in a way which is conducive for

batch or shell scripts to handle the majority of the setup with as little input required from the

test conductor as possible.

 The implementation cannot require the test conductor to memorize more than one or two

sets of credentials. Anything more than this and he or she is likely to write them down,

causing another security risk.

 Most importantly, the security standards set forth in IEEE P1877 must comply with all federal

regulations set forth by the National Institute of Standards and Technology (NIST), Federal

Information Processing Standards (FIPS), and any other regulation at the federal level that

dictates how a network must be secured.

6

4. ENCRYPTION

A. Symmetric-key

Symmetric key cryptography is also known as shared key cryptography. As the name suggests,

it involves 2 people using the same private key to both encrypt and decrypt information. Public

key cryptography, on the other hand, is where 2 different keys are used – a public key for

encryption and a private key for decryption.

Because symmetric key cryptography uses the same key for both decryption and encryption, it

is much faster than public key cryptography, is easier to implement, and generally requires less

processing power. The current specification for this recommended by the federal government is

Advanced Encryption Standard (AES) with options for 128, 192 or 256 bit keys. The use of a

256 bit key is approved for the transmission of any data at the top secret classification level or

below.2

For IEEE P1877, 192 bit was chosen. Implementations in the test bed were demonstrated using

each of the bit keys with minimal notice of decreased speed. While 256 bit may take longer due

to a larger key, testing shows that the Raspberry PI, 0.8 MB/s (6.4 Mbit/s) demonstrates good

performance as an AES-256-CBC throughput. It is important to note this exceeds some DD-

WRT compatible routers.

A disadvantage of symmetric key cryptography is that the 2 parties sending messages to each

other must agree to use the same private key before they start transmitting secure information.

This may be impossible depending on the circumstances – because the 2 parties who want to

communicate with each other through a secure means may be on different sides of the world.

And this means that they will need a secure way to tell each other what the private key will be –

if there were a secure way to do this, then the cryptography would not have been necessary in

the first place in order to create that secure channel.

B. Public-key

Public-key cryptographic systems use two keys -- a public key known to everyone and a private

or secret key known only to the recipient of the message. When Bob wants to send a secure

message to Alice, he uses Alice's public key to encrypt the message. Allice then uses her

private key to decrypt it.

An important element to the public key system is that the public and private keys are related in

such a way that only the public key can be used to encrypt messages and only the

corresponding private key can be used to decrypt them. Moreover, it is virtually impossible to

deduce the private key if you know the public key. The use of this form of encryption, while

sophisticated in approach, is manageable for the test bed implantation through the generation of

self-signed certificates. For the LSEs public key to be valid in actual production, the key must be

signed by a Certificate Authority (CA).

Signed Certificates are a common function of the Internet. They are used for all HTTP Secure

(HTTPS) connections between a client and third party. The use of CAs in an environment such

as this would require a private CA. The benefits of this form of security implementation:

7

 LSEs communicate without the messages being routed through the server.

 There are a greater number of keys in this implementation used for communication.

 If one key is compromised, the entire network has a lower level of risk.

Auto-signed SSL certificates are easily generated and you will have exactly the same security

and encrypting level than any official certificate. However, this certificate will not be officially

recognized over the Internet. When connecting to your site, your Web browser will warn you

about the impossibility to guaranty your security connecting to this site, and you have to accept

this. For the test bed implementation, this was within acceptable requirements.

How to generate an auto signed certificate:

Install OpenSSL:
root prompt#>sudo apt-get install openssl

Generate your self signed certificate:
root prompt#>sudo mkdir -p /etc/ssl/localcerts
root prompt#>openssl req -new -x509 -days 3650 -nodes -

out/etc/ssl/localcerts/autosigned.crt -keyout/etc/ssl/localcerts/autosigned.key
root prompt#>chmod 600 /etc/ssl/localcerts/*

SSL is an acronym that stands for Secure Sockets Layer. It is the standard behind secure

communication on the Internet, integrating data cryptography into the protocol. The data is

encrypted before it even leaves your computer, and is decrypted only once it reaches its

intended destination. In theory, if the encrypted data were intercepted or eavesdropped before

reaching its destination, there is no hope of cracking that data. But as computers become ever

faster as each year passes, and new advances in cryptanalysis are made, the chance of

cracking the cryptography protocols used in SSL is starting to increase.

SSL and secure connections can be used for any kind of protocol on the Internet, whether it be

HTTP, POP3, or FTP. SSL can also be used to secure Telnet sessions. While any connection

can be secured using SSL, it is not necessary to use SSL on every kind of connection. It should

be used if the connection will carry sensitive information.

OpenSSL is capable of message digests, encryption and decryption of files, digital certificates,

digital signatures, and random numbers. The advantage of OpenSSL is that it is more than just

the API, it is also a command-line tool. The command-line tool can do the same things as the

API, but goes a step further, allowing the ability to test SSL servers and clients.

8

5. CONCLUSIONS

The initial goals of the project were to:

 Elevating privileges and becoming familiar with the mREST project source code.

 Attempt to port existing PHP code over to an embedded device and SoC.

 Add HTTPS and AES security on both sides and evaluate for inclusion with the LES.

 Evaluate performance improvement and ease of use.

 Evaluate the requirements document to determine any refinements.

Due to hardware and software failures on the TFDM, and SME access from METECS

personnel, the scope of the project was gradually switched to an investigation of using the

Raspberry Pi as a model for the LSE and evaluating security options. In consideration, the

government furlough along with pre and post-furlough events, posed additional difficulties and

stretched available resources.

The Raspberry Pi was utilized as a development platform for Offline/Online development using

inexpensively replicated non-ACES platforms. The Raspberry Pi is a low cost credit-card sized

computer, with an ARM-based CPU. It uses very little power (only 3 Watt), so it’s ideal for a

server that’s always-on.

The results of the project demonstrated that establishing OpenSSL and the OpenVPN server is

very easy due to the fact that the Raspberry Pi is running (a modified) Debian Weezy called

Raspbian. Utilizing both OpenVPN and OpenSSL does slow performance since the CPU will

have to encrypt/decrypt on the fly establishing one additional "encryption layer.” This layered

approach may lose OpenSSL efficiency. However, testing shows that the Raspberry PI, 0.8

MB/s (6.4 Mbit/s) demonstrates good performance as an AES-256-CBC throughput. It is

important to note this exceeds some DD-WRT compatible routers.

Future projects may investigate the benefits of coding the PHP to establish a secure connection

as envisioned in the original intent of the project. However, at this time the key management

issues would be labor intensive with no promise of increasing overall security design.

9

References

1Behe, Robert, “A Standardized Approach for Securing Automated Test Orchestration
Interfaces”, USRA Summer Internship Report, Houston, TX. 2013

2Security Requirements for Cryptographic Modules, FIPS PUB 140-2

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including

suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

 September 2014 Technical Memorandum

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS

Implementation and Validation of a Two-Tier Light-Weight Method for Securing Embedded

Controllers

Securing the Raspberry Pi as a Development Platform

6. AUTHOR(S)
Ethan G. Ganzy

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBERS

Lyndon B. Johnson Space Center

Houston, Texas 77058

S-1168

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

National Aeronautics and Space Administration

Washington, DC 20546-0001

TM-2014-218555

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified/Unlimited
Available from the NASA Center for AeroSpace Information (CASI)
7115 Standard
Hanover, MD 21076-1320 Category: 61

13. ABSTRACT (Maximum 200 words)

 Protecting information and equipment at NASA is an area of increasing concern, after a GAO report in February (see also 2009), and

an Inspector General release in March. Supervisory, Control and Data Acquisition systems are especially vulnerable because these

systems have lacked standards, use embedded controllers with little computational power and informal software, are connected to

physical processes, have few operators, and are increasingly also being connected to corporate networks. The opportunity exists with

IEEE 1877 to “build in” durable, scalable, effective security features. The standard interface needs standard security features that can

support a variety of standards-based or proprietary architectures and be flexible enough to enable a response if some of these standard

features are compromised, while supporting rather than interfering with an automated operations where one or a few operator(s)

control many networked modules in a secure way. An approach was developed during the Summer of 2013 which remained to be

validated in one of the test beds. The goal was to implement and evaluate approaches to both server-side security and client-side

security, and tools for interacting with the interface such as browser plug-ins. The approaches developed may be refined as a result of

this work.

14. SUBJECT TERMS 15. NUMBER OF

 PAGES

16. PRICE CODE

security; Raspberry Pi; automation; IEEE P1877; OpenVPN; computer software;

computer hardware; computer networks; algorithms 16

17. SECURITY CLASSIFICATION

OF REPORT

18. SECURITY CLASSIFICATION

 OF THIS PAGE

19. SECURITY CLASSIFICATION

 OF ABSTRACT

20. LIMITATION OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited

Standard Form 298 (Rev Feb 89) (MS Word Mar 97)
Prescribed by ANSI Std. 239-18
298-102

NSN 7540-01-280-5500

