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Abstract

Venous gas emboli (VGE) (gas bubbles in venous blood) are associated with an increased risk of
decompression sickness (DCS) in hypobaric environments. A high grade of VGE can be a precursor to
serious DCS. In this paper, we model time to Grade IV VGE considering a subset of individuals assumed
to be immune from experiencing VGE. Our data contain monitoring test results from subjects undergoing
up to 13 denitrogenation test procedures prior to exposure to a hypobaric environment. The onset time of
Grade IV VGE isrecorded as contained within certain time intervals. We fit a parametric (lognormal)
mixture survival modd to the interval- and right-censored data to account for the possibility of a subset of
“cured” individuals who are immune to the event. Our model contains random subject effects to account
for correlations between repeated measurements on asingle individual. Model assessments and cross-
validation indicate that this limited failure population mixture model is an improvement over a model that
does not account for the potentia of afraction of cured individuals. We aso evaluated some aternative
mixture models. Predictions from the best fitted mixture model indicate that the actual processis
reasonably approximated by a limited failure population model.



1. Introduction

Humans exposed to hypobaric environments, such as astronauts performing an extravehicular activity
(EVA), typically experience the formation of gas bubbles in venous blood as a result of decompression.
The reduction in pressure from the space shuttle or a space station to a pressurized space suit can cause
nitrogen gas, which is normally dissolved in body fluids and tissue, to escape from solution too rapidly,
resulting in the formation of bubbles in tissue and blood. The movement of gas bubbles into venous blood
is called venous gas emboli (VGE). In most cases, the lungs filter out the bubbles prior to any danger of
their being passed to arterial blood, where they may block the pulmonary artery or lodgein the brain. In
some cases, however, especialy those cases where an individua has a patent foramen ovale (PFO), there
is the chance of bubbles traversing to arteria blood. Briefly, a PFO is an opening in the heart between the
right and left arterial chambers that allows the passage of bubblesinto arteria circulation and critical
tissues. The presence of these circulating gas bubbles in the blood stream could contribute to serious
hypobaric decompression sickness (DCS). For a further description of the process, see Bove (1998).

Types of DCS are distinguished by seriousness. The symptoms of Type | DCS are milder and include
joint pain, or “the bends,” in the elbows, knees, or shoulders. The symptoms of Type Il DCS (“ serious”
DCY) are neurological (e.g., memory l0ss, unconsciousness, stroke), cardiac, or pulmonary (e.g., deep
chest pain caused by bubbles blocking the pulmonary artery); Type Il DCS can be fatd if it is not treated
immediately. Thisis particularly problematic for astronauts performing an EVA because of the lack of
quick rescue capability. To reduce the risk of the occurrence of VGE, astronauts typicaly breathe 100%
oxygen prior to EVAs. Prebreathing oxygen helps to eliminate nitrogen from tissues, and reduces the
number of circulating bubbles while at altitude and during the EVA.

Prebreathe procedures are evaluated in atitude chambers prior to their use on spaceflight missions by
tests that produce low-pressure conditions. In these tests, the existence of VGE is typically monitored
using Doppler detection, and the extent of bubble signals is measured in grades using the Spencer scale
(Spencer, 1976). Spencer scale grades range from Grade O (i.e., the “absence of bubble signalsin cardiac
cycles’ to Grade 1V (i.e., “bubble signas are detected continuously throughout the monitoring period,
overriding the amplitude of cardiac motion and blood flow signals’). The lower the grade in the scale,
the lower the apparent number of bubbles. Conkin et a. (1998) describe the connection between VGE
and DCS in more detall.

The effectiveness of each prebreathe procedure can be measured by the percentage of cases of high
bubble grade (Grade 1V or above) produced in smulated low-pressure conditions (e.g., in an atitude
chamber). Grade IV bubbles are of concern because they are associated with an increased risk of Typelll
DCS, especidly for individuals with a PFO. So, the choice of a particular denitrogenation procedure for
use prior to an EVA will depend on the effectiveness of the procedure in avoiding Grade 1V bubbles
and, thus, potentially serious DCS.

Previous research on statistical modeling of the time to onset of DCS in high-altitude conditions has dealt
with right-censored data and a single parametric form of the surviva distribution for the entire population
under study. The nature of DCS onset is such that risk rises with time, reaches a maximum, then declines
(Conkin et a., 1996). As such, acommonly used hazard modd for time to onset of DCS is the log-logistic
or log-normal hazard functions. Conkin et a. (1996) used alog-logistic model for the time to onset of
DCS symptoms, with covariates related to tissue ratio (a measure of nitrogen decompression stress) and
exercise at dtitude. The authors also described survival models for modeling the onset of VGE detection
from Doppler ultrasound. Kumar and Powell (1994) modeled log time to onset of DCS as a parametric
function of the explanatory variables, tissue ratio, and presence of circulating microbubbles in venous
blood. Kannan and Raychaudhuri (1998) fit both parametric (log-logistic) and semi-parametric (Cox)
models to DCS data from individuals in hypobaric chamber tests. For each individua, the se authors



considered the time to onset of DCS symptoms as well as severd explanatory variables such as exercise
a atitude, amount of time spent prebreathing oxygen prior to exposure, maximum bubble grade using the
Spencer scale, and pressure at altitude. In addition, Koti et d. (1998) used log-logistic and log-normal
models for modeling time to onset of DCS, using heavily right-censored data from the NASA hypobaric
decompression sickness databank (HDSD). Chhikara et a. (2000) later used Cox’ s proportional hazards
model on the same dataset.

Limited Failure Population Models

Conkin et a. (1996) suggested that under certain circumstances, there are some individuals who will

never get Grade IV VGE no matter how long they remain at high dtitude. Thus, it may not be idedl to use
an ordinary survival model for modeling the time to onset of DCS or its related causes. Limited failure
population (LFP) modelsin surviva analysis have often been applied in the biostatistical and medical
literature where it is known or assumed that some fraction of the population (the “cured” fraction) will
never experience the event under study. Maller and Zhou (1996) provide a complete history of these
models.

The application of a survival model for an LFP typically involves a mixture model, which can be a
standard mixture of severa different models or a nonstandard mixture model where one component is
degenerate. For example, in clinical settings where the endpoint under study is death due to disease, the
surviva function can be expressed as a mixture model with different component survival distributions for
death due to different causes, including the one under study, as well as “normal mortality”. The resulting
model is a standard finite mixture model in which mixture components may or may not depend on
covariates, and the survival distributions for each competing risk may or may not be completely
parametric. Examples of this type of LFP mixture model appear in Gordon (1990), Kuk and

Chen (1992), and Larson and Dinse (1985).

In situations where the endpoint under study occurs by only one known means (e.g., paralysis due to
excess radiation or onset of hypoxia due to low atmospheric pressure) or where competing causes of the
endpoint are not observable (e.g., relapse of cancer caused by overgrowth of any number of cancer cells),
the resulting mixture representation of “cured” and “non-cured” individuals becomes degenerate in the
cured component. That is, the survival distribution becomes degenerate at 1 for cured individuals, with
infinite failure times. The mixture model originally proposed by Berkson and Gage (1952) models the
population surviva function as a mixture of a standard survival distribution and a degenerate survival
function with point mass at 1. Thus, the survivor function for the entire population is

Spop (t) =p S(t) +1- p (11)

where S(t) isthe survivor function for individuals who will experience the event, and p represents the
probability of eventually experiencing the event, given enough time. A nice feature of model (1.1) isthat
because S(¥ )=0, asfor an ordinary survival distribution, S;,,(¥)=1- p ,sothat 1- p denotesthe
“curerate’ of the population.

Examples of (1.1) as an LFP mixture model are found in Berkson and Gage (1952), Farewell (1982),
and Taylor (1995). Farewell (1982) describes alogistic-Weibull mixture applied to fish toxicology data,
where the Weibull model is used for the survival distribution and alogistic model is used for the cure
probability. Taylor (1995) and Kuk and Chen (1992) describe semi-parametric versions of this model
using, respectively, a Kaplan-Meier estimator for the survival distribution and a proportiona hazards
structure with an unspecified baseline hazard function.



Although the form of model (1.1) is simple, it can be attractive in certain circumstances, such as
clustering of observations and the presence of interval censoring. Because of its simplicity, the use of
modd (1.1) with a parametric surviva distribution can make both estimation and assessment of goodness-
of-fit and predictive vaidation easier. Modd (1.1) is aso easy to interpret, and its mixture structure may
already be familiar to researchers. Thus, it serves as a nice start from which a more flexible model can

be constructed. The aim of our paper isto apply thisrelatively ssimple model to a dataset with interval-
and right-censored measurements, with the addition of random effects to handle clustering of
observations.

We fit an LFP mode for predicting the time to onset of Grade IV venous gas bubbles. To achieve this, we
use a NASA databank consisting of test results from volunteer subjects undergoing monitoring for VGE
under hypobaric conditions. All of the observations were either interval or right-censored, and some of
the individuals tested performed more than one test, thereby providing multiple records in the dataset.

M easurements on certain explanatory variables known to be associated with DCS were a so recorded

for each subject.

Since we assume a priori that individuals who are immune to Grade IV bubbles are present in the
population under study and also in the dataset at hand, there will be no formal test for the presence of
immunes. We base our decision on examination of the physiological circumstances surrounding DCS, and
on the fact that our dataset may not have sufficient follow-up to be able to test formally for the presence
of immunes. Maler and Zhou (1996) discuss formal testing and its limitations.

The remainder of this paper proceeds as follows. Section 2 gives a description of the data, testing
procedure, and explanatory variables measured. Section 3 explores nonparametric survival distributions.
Sections 4 and 5 describe the mode fitting. Section 6 provides an assessment of goodness of fit. Section 7
discusses predictive validation. Section 8 addresses predictions for the fitted models. And, Sections 9 and
10 include discussion and extensions.

2. Description of the Data and Testing Procedure

NASA’s HDSD (Conkin et a., 1992) contains monitoring test results from human volunteer subjects
undergoing denitrogenation test procedures prior to exposure to low pressure. The exposure records are
from 453 males and 96 females who participated in atotal of 28 different test procedures from 1983 to
1998. However, because some subjects participated in more than one test procedure, the number of
individuals tested was 238 (of which 177 were male). Each test involved one decompression, and is
described generaly in the next subsection. The highest number of test results contributed by a single
individual was 13. The median number of test results was two. The recorded data did not provide
information on the order in which the tests were taken.

2.1 Testing Sessions and Recorded Data

Each testing session was scheduled to last anywhere between two and six hours; the median was three
hours. Subjects were tested in groups of one or more individuals. A subject’s group designation was not
included in the recorded data, although multiple records by a single subject were indicated. There were
two magjor phases during atypical testing session. In the first phase, the subject prebreathed 100% oxygen
a site pressure while sitting. In the second phase, the subject was brought to “dtitude” where he/she was
monitored for Doppler-detectable bubbles. During this second phase, the subject performed a variety of
repetitive exercises, mostly while standing. He or she also walked to as many as three exercise stations
and to a bubble monitoring station. Bubble monitoring was scheduled to begin at approximately every 16
minutes while a group of subjects was at atitude. However, according to the data, monitoring sometimes



began after intervals of over a haf hour. Each monitoring session was scheduled to last for four minutes,
where the subject flexed the limbs in sequence to improve bubble detection.

If Grade 1V bubbles were detected within a monitoring interval, the recorded datum for the subject
wastheinterval between the end of the last monitoring period and the beginning of the interval in which
Grade 1V bubbles were detected, no matter the point in the monitoring interval in which Grade IV bubbles
were detected. Thus, these cases were interval-censored. If Grade IV bubbles were not detected during the
entire test session, the recorded onset time was right-censored at the end of the session. These right-
censored observations were considered to be Type | right-censored (Lawless, 1982). If the test was
stopped for any reason prior to the end of the session, the observation was right-censored at that time.
Observations, which corresponded to tests stopped prior to the prescheduled time at dtitude, were
considered randomly right-censored. A test was never stopped during a monitoring interval.

Of the 549 records, 124 were interval-censored (i.e., Grade 1V bubbles were detected), leaving over 75%
of the cases Type | right-censored and 2% random right-censored. Due to equipment failure, the interval
for one observation lasted about 104 minutes. This observation was discarded, leaving 548 records from
the 238 individuals tested.

2.2 Explanatory Variables

Explanatory variables included experimenta variables and physical characteristics of the subjects. The
variables and their summary statistics are given in Table 1. The importance of these variablesin DCSis
well-documented (Carturan et a., 1999; Conkin and Powell, 2001; Sulaiman et a., 1997; Webb et al.,
1999). The first variable (TR360), a measure of decompression stress, is the ratio of the partial pressure of
nitrogen at atitude to ambient pressure prior to ascent. A theoretica compartment with a half-time of 360
minutes was used to model nitrogen elimination and obtain the vaue of the explanatory variable, TR360
(see Conkin et d., 1996, for information on the development of TR360 and its recording in the HDSD).
The greater thisratio is above 1.0, the more quickly we would expect to detect high bubble grades. The
variable NOADY N indicated whether the test subject was ambulatory (NOADYN = 1) or lower body
adynamic (NOADYN = 0) during the session. The variable SEX was coded male = 1 and female = 0.
The mean of SEX shown in Table 1 is dightly misleading because although 83% of the 548 test

records were contributed by males, only 74.4% of the 238 individualswere male.

Table 1: Explanatory Variables Measured on Each Case

TR360 SEX AGE NOADYN
Minimum: 0.94 0.00 20.00 0.00
M ean: 157 0.83 31.85 0.85
M edian: 1.68 1.00 30.00 1.00
M aximum: 1.89 1.00 54.00 1.00
SD: 0.26 0.38 7.17 0.36

In what follows, we will refer to the entire dataset of interval- and right-censored observations, along with
measured explanatory variables as the Grade IV VGE data.

2.3 Data Characteristics

To provide initial insight into the characteristics of the data and to facilitate further discussion,
we constructed several cross-tabulations of explanatory variables by proportion of Grade IV VGE



occurrence. TR360 was categorized into quintiles, and AGE was categorized into groups: 19 — +30,

30— +40, 40 — +60. The categories for AGE were chosen to divide the age group into younger, middle,
and older age categories. Three categories were chosen to have enough data fall into each category. Table
2a shows the proportions for TR360 and NOADY N status, Table 2b shows the proportions for SEX and
NOADY N status, and Tables 2c and 2d show the proportions for SEX by AGE, and NOADY N status by
AGE, respectively. No formal hypotheses were tested using the tabulations.

Not surprisingly, the proportion of Grade IV cases in the dataset increases with higher categories of
TR360. According to Table 2a, however, when the sampleis categorized by NOADY N status, thereisan
increasing incidence of Grade IV VGE by TR360 for ambulatory subjects, but there does not appear to be
asmilar trend for the adynamic subjects. Notice, too, that the proportion of Grade IV cases for Adynamic
subjects is higher than the proportion for Ambulatory subjects in the TR360 range [0.94, 1.35). For all
other TR360 categories, the proportion for Ambulatory subjects is higher than for Adynamic subjects.
This may be indicative of a dight interaction between TR360 and NOADY N in their influence on

Grade 1V occurrence. However, some of the sample sizes in the Adynamic categories may be too

small to provide reliable proportions of Grade IV VGE.

Table 2a: Cross-Tabulation of TR360, NOADYN, and Grade |V VGE

TR360

094+-135 | 135+-168 | 168+-177 | 177+-1.89

NOADY N=0 (Adynamic)
No GIV VGE 16/19=0.84 14/14=1.0 22/23=0.96 24/28 = 0.86
GIV VGE 3/19=0.16 0/14 =0.0 1/23 =004 4/28 = 0.14

NOADYN=1 (Ambulatory)
No GIV VGE 107/113 = 0.95 91/124 = 0.73 126/191 = 0.66 13/24=0.54
GIV VGE 6/113 = 0.05 33/124 = 0.27 65/191 = 0.34 11/24 = 0.46

"The column TR360 £ 0.94 was not included because only 12 observations had TR360 in this range, with no cases
of Grade IV (GIV) VGE.

Table 2b shows that the incidence of Grade IV VGE is higher among Ambulatory than Adynamic

subjects, and this direction does not change with sex. Males have a higher percentage of Grade IV VGE
cases than females have.

Table 2b: Cross-Tabulation of NOADYN, SEX, and Grade |V VGE

NOADYN
Adynamic | Ambulatory
Female
No GIV VGE 25/27 =0.93 61/69 = 0.88
GlV VGE 2/27 = 0.07 8/69 = 0.12
Male

No GIV VGE 51/57 = 0.90 288/395 = 0.73
GIV VGE 6/57 = 0.10 107/395 = 0.27




Table 2c shows that the proportion of Grade IV VGE cases increases with AGE group regardless of sex —
with the exception of the incidence for females over age 40. This exception might also be considered as
evidence of adight interaction between SEX and AGE, although the sample size in this category may

be too smdll for the interaction to be reliable.

Table 2c: Cross-Tabulation of SEX, AGE, and Grade |V VGE

AGE
19+-30 | 30+— 40 | 40+ — 60
SEX=0 (Female)
No GIV VGE 34/35=0.97 39/47=0.83 13/14=0.93
GIV VGE 1/35 = 0.03 8/47 = 0.17 1/14 = 0.07
SEX=1 (Male)
No GIV VGE | 206/260 = 0.79 89/124 = 0.72 44/68 = 0.65
GIV VGE 54/260 = 0.21 35/124 = 0.28 24/68 = 0.35

Finaly, Table 2d tabulates Grade IV incidence by AGE and NOADY N status. As before, we see an
increasing incidence of Grade IV VGE with AGE and with ambulatory individuals. However, this table
aso shows that the difference in Grade IV incidence across NOADY N status (Adynamic vs. Ambulatory)
remains roughly constant across AGE.

Table 2d: Cross-Tabulation of NOADYN, AGE, and Grade |V VGE

AGE
19+-30 | 30+— 40 | 40+ — 60
NOADYN=0 (Adynamic)
No GIV VGE 33/34= 0.97 27/31=0.87 16/19=0.84
GlV VGE 1/34=0.03 4/31 =0.13 3/19 = 0.16
NOADYN=1 (Ambulatory)
No GIV VGE 207/261 = 0.79 101/140 = 0.72 41/63 = 0.65
GIV VGE 54/261 = 0.21 39/140 = 0.28 22/63=0.35

Overdl, the cross-tabulations show genera trends of the importance of TR360, SEX, NOADYN
status, and AGE on the incidence of Grade IV VGE. Also, there appears to be some evidence of possible
interactions among variables as the variables are categorized in the tables.

In the following sections, we will explore the influence of the explanatory variables on the time to
onset of Grade IV VGE. For exploratory purposes, we will next describe a nonparametric estimator of the
survival curve.



3. Turnball Estimates of Survival Curves

A nonparametric method for estimating S t ), the probability of survival beyond a given time, t, is due
to Turnball (1976). Turnball’s method generalizes the Kaplan-Meier estimate of survival probabilities to
intervalcensored data and provides a nonparametric maximum likelihood estimate (MLE) of S(t)
computed using an Expectation-Maximization agorithm, as we briefly describe next.

Consider eachinterval endpoint to be arecorded time, say t;, and form new intervals based on the
ordered recorded times, 0=t,<t; <... <t Consder theith individua who experiences an event within
the interval (L;, R]. For every interval of recorded time, (t;.1, t;], that falls within the censored interval (L,
R], seta;; = 1. Given aninitial estimate of S(t; ),j = 1,..., m the algorithm iterates between estimating p

=S(tj.1) - gt;), the probability of the event occurring within the interval, (t;.1, t;], and estimating S(t; ),
using a Kaplan-Meier estimate involving the pseudo-number of events, d; , occurring at time t;, where

d, :é (aijpj/é icPy) - Convergence of the algorithm to stable estimates p; then yields the
i=1

nonparametric MLE of S(t).

However, the nonparametric MLE found by the algorithm is not necessarily unique (Turnball, 1976).
Gentleman and Geyer (1994) point out that the maximization is a concave programming problem with
linear constraints on the sum of the nonnegative p;. A sufficient condition for the uniqueness of the MLE
computed using this algorithm is the negative definiteness of the Hessian matrix of the log likelihood as a

function of the p;. The Hessian matrix is negative definite if then = mmatrix, A, of the elements a;; is
full column rank. We refer you to Gentleman and Geyer (1994) for further details.

The Turnball estimateof F(t)=1- {t), the probability of experiencing the event by time, t, was
computed for the Grade IV VGE data togethre with 95% simultaneous confidence bands. The MLE of F
was determined to be unique if we use the method of Gentleman and Geyer. The confidence bands were
computed on the logit-transformed F(t), then back-transformed to get an interval on F(t) itself (Meeker
and Escobar, 1998). The formulas used for the lower and upper confidence limits were programmed in
S-PLUS 2000 and Mathematica 4.0. Figure 1 shows the resulting estimate with 95% simultaneous
confidence bands.

The presence of a cured fraction of individuals in a population may be manifested in the data through

a plateau in an estimate of the survival curve, such asin a KaplanrMeier or Turnball survival estimate.
Figure 1 shows evidence of a plateau of approximately 0.25, beginning at about five hours. Thus, if the
cured fraction in the dataset were actually 0.75, the Turnball estimate as shown in Figure 1 would plateau
at around 0.25. However, a plateau can aso occur if there isinsufficient follow-up in the study, resulting
in many right-censored observations. Maller and Zhou (1996) give further details and references.
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Figure 1. Turnball estimate of probability of Grade IV VGE by
time (hours), along with 95% simultaneous confidence bands.

We also dratified the data by sex aswell as by NOADY N status (LBA = lower body adynamia) before
we computed the Turnball estimate of the probability of Grade IV bubbles. Figure 2 shows the estimates
of probability, excluding 95% confidence intervals for clarity. It isimportant to note that although the
strata have different sample sizes, the graphical estimates still give some idea of what to expect from
predictions of a parametric model. Figure 2a shows that males may have a higher probability of Grade IV
bubbles over females, although the curve for femalesis based on only 96 out of 548 records. Figure 2b
shows that individua s with movement in the lower body (i.e., ambulatory) have a higher probability

of Grade 1V bubbles at most times; again, the curve for LBA is based on only 84 records.

Stratified by Sex Stratified by Lower Body Adynamia Status
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Figure2. Turnball estimates of probability of Grade IV VGE, stratified by (a) sex and (b) L BA status.
No LBA impliesthat theindividual isambulatory. Sample sizes can beinferred from Table 1.



Figures 3a and 3b dratify the data by quintiles of TR360 and the AGE categories used in Table 2d, and
show the Turnball estimate for each stratum. The lowest category was not included for TR360 because
there were no instances of Grade IV VGE. Both figures show that onset time decreases with age and
with TR360.

Stratified by TR360
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Figure3a. Turnball estimates of probability of Grade IV VGE, stratified by TR360.
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Figure 3b. Turnball estimates of probability of Grade |V VGE, stratified by AGE.



4. Moddl Fitting and Selection
4.1 Lognormal Model for Non-cured Population

A common way to deal with interval-censored observations when fitting parametric modelsis to
use maximum likelihood estimation, where the likelihood contribution for an observation known to fall

withintheinterval (t,,t,] is (‘51 f(u; q)du, wheref isthe density corresponding to the parametric

distribution function F, which depends on q . For Grade IV VGE data, the chosen parametric form for
the surviva distribution for the “non-cured” individuals was lognormal because the form of its hazard
function is consistent with the hypothesized potential for experiencng Grade IV bubbles. That is, the
lognormal hazard function is zero at time zero, increases to a maximum, then decreases to zero astime
goes to infinity. The potentid for Grade IV VGE for individuals in hypobaric conditions is purported to
follow this trend. Other parametric forms— such as the Weibull and log-logistic — were dso tried, but the
fit of these parametric forms was worse than for the lognormal. Thus, the log time to onset of Grade IV
bubbles is assumed to be normally distributed with a mean that is alinear combination of several
covariates, and a constant scale parameter. The survival function is

atog(t) - m(x) 0 (41)
S : '

s(t|b,s x)=1- Fe s

where
F isthe cumulative distribution function for the standard normal distribution

J
m(x) =b, +Q X by

k=1

s isthe standard deviation of log(t), and
X« k=1,..., paevaluesof p explanatory variables

An initial model included all the variableslisted in Table 1as covariates. For computational purposes,
the variables AGE and TR360 were standardized. The standardized versions are subsequently denoted
as SAGE and S TR360, respectively, where SAGE = (AGE - 31.85)/7.17, and STR360 = (TR360 -
1.57)/.263 (Table 1 contains the means and standard deviations used for standardization.) The covariates
were dl included in linear form. Some investigation into nonlinear forms yielded no reason to suspect
nonlinear effects of the covariates on the response variable. In addition, pairwise scatterplots between
pairs of covariates did not reveal any noticeable relationships.

4.2 Modeling M ultiple Obser vations Per Subject

Some observations originated from the same individua undergoing different tests. That is, some groups
of observations represent repeated observations within the same subject, and these observations are
correlated. Although analyzing the data as though the observations were independent can be mideading
with respect to the precision of the parameter estimates. There are several ways to deal with dependent
observations. Statistical methods for handling dependent observations might broadly be categorized in
one of two ways. (1) either dependency is accounted for in the statistical model, or (2) an adjustment is
made to the variability estimates obtained from a model that assumes independent observations. We
chose areatively smple, but typical, method of the first way for modeling the correlation between
pairs of observations from the same individual.
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Random Effects Model for Dependent Observations

A random effects model handles repeated measurements by incorporating random subject effectsinto
the linear form representing the conditional mean of the log time to the event. The conditional mean for
the jth log event time for the ith subject is modeled as

&
E(Iogtij | ,x)= m (xX)=by+Qa injbk +b, (4.2
k=1
In this representation, b, is the random effect for subject i, distributed normally with mean zero and
constant variance s 2. Note that the observations made on the same subject share the same random effect.

Also, the b are assumed to be independent of one another. Using (4.2), the model representation for log
tij is

logt; =m; (x) + ¢ (4.3

In (4.3), e; represents a mean-zero, normally distributed error term with variance s #, and independent of
b, . The unconditional variance of logt; isthuss *+s ?, so the correlation between any pair of log times
for agiven subject is corr(logt; logt;;) = s 2/6?+s?)=r,independent of i and j.

A random effects model also alows for heterogeneity in log times across subjects. Assuch, it can
capture variability not modeled already in the linear combination, b, +§_ X b . Alargevalueof s?,
k=1

the variance of random subject effects, relativeto s 2, the variance due to al other factors besides subject
effects, may indicate relatively high variability among observations made between individuals or could
indicate a proportionately large amount of unmodeled covariates.

4.3 Egtimation of the Parameter s from a Random Effects M odel

Mode (4.3) has p + 3 parameters: (b = (b, ..., bp), Sp, S). Inaclassica statistics context, the number

of parameters for this model will aways be p + 3 irrespective of the number of subjects tested. Although
the random effects, b, may behave like parameters, technically these random effects are just another level
of random variation in the model. So, we do not estimate them as we would the other p + 3 parameters.
However, their distribution must be considered in the likelihood function describing the random process

that is assumed to have generated the data. If we denote the likelihood conditional on b =(b,,...,b,) by
L(b,s,s,,b=(b,....b,)), then MLEs of (b, s}, S) are obtained by maximizing, with respect to (b, sy,
s), the likelihood integrated over the distribution of the random effects, b

L(b,s.,5p)=)(b.s b)N(bIs,) db= 0(5 L(b,s b)N(hls,) db (4.4)

where N(b |s ,) isthe zero-mean Gaussian probability density function with standard deviation, s,

evaluated at b, . However, the integration in (4.4) is not always tractable. In this case, other options are
available for getting MLEs. Computational methods for standard errors of the estimates depend on the
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option chosen. In our case, numerical integration is a viable option because we integrate with respect to
univariate variables. That is, the right-most side of (4.4) can be written as

L(b,s ,Sb)=(~_) O-(b.s b)N(bIs,) db (4.5

Equation (4.5) is then maximized with respect to the parameters of interest. Gauss-Hermite quadrature
can be used to do the integrations (Naylor and Smith, 1982).

Another aternative for obtaining generalized MLEs is via Bayesian estimation with diffuse priors on the
unknown parameters. With the complicated likelihood functions, Markov Chain Monte Carlo (MCMC)
sampling makes estimation easier than other methods. In this type of sampling, repeated draws from the
joint posterior distribution follow afirst-order Markov chain. The joint posterior distribution of the
parameters is proportional to the likelihood function times the joint prior distribution on the parameters.
Estimates of expectations with respect to the posterior distribution can be obtained as Monte Carlo
estimates using samples from the chain. For symmetric, unimodal distributions, first-order expectations
(if they exist) coincide with strict MLEs. So, when histograms of the samples from the chain look
unimodal and symmetric, the sample average is fairly close to what would be the MLE had we used
traditional maximum likelihood estimation procedures (for example, Gilks et a., 1996).

An advantage of MCMC sampling with random effects modelsis that the random effects can be sampled
from their conditional distribution (given the data and current parameter samples) and implicitly averaged
over. This avoids direct integration required to get the integrated likelihood.

We combined the two approaches to estimate parameters. First, we set independent diffuse priors on

the parametersin (b, sy, S), and then used MCMC sampling to obtain approximate generalized MLES

by taking the sample averages from the MCMC output chains. All univariate histograms of the MCMC
samples of single parameters were roughly symmetrical. We then used approximate generalized MLEs as
starting values in a quasi-Newton Rapheson algorithm to maximize integrated likelihood. The integration
was performed using Gauss-Hermite numerical integration. The reason for combining the two methods
instead of using the MCMC sampling alone was that the MCMC sampling (as described) included the
specification of ajoint prior distribution. Although the joint prior was specified to be diffuse and, thus
arguably , close to noninformative with respect to the likelihood, we note that this analysisis not strictly

a Bayesan analysis. A prior distribution has no meaning in our estimation, and is used together with
MCMC sampling to get starting values only. There are certainly methods for usng MCMC sampling

in frequentist contexts (e.g., Gilks et a., 1996), including the use of a truly noninformative joint prior.
However, none of these procedures (that we tried) was as practical to implement computationally as the
above combined approaches. Furthermore, al of the methods we did try “converged” to smilar estimates.

More details of the estimation are presented later. We will now describe an extension of the initial
lognormal moddl to handle a cured fraction.

5.An LFP Mode for Timeto Onset of GradelV VGE

An LFP Model is amixture model for survival data consisting of two groups: (1) individuals who

will eventualy experience the event, and (2) individuas who will never experience the event, sometimes
caled “immune” individuas. The probability that a randomly selected individual will never experience
the event in question is sometimes referred to in the literature as the “cure rat€”’. The cure rate may or
may not depend on explanatory variables. There are numerous references of the application of these



modelsin survival and reiability analysisin the literature (e.g., Maller and Zhou, 1996; Meeker and
Escobar, 1998).

For our population, the cure rate is the probability of never experiencing Grade IV bubbles. We

assume that the cure rate depends on explanatory variables measured on each individual. This means
that for a given individual, the probability of experiencing Grade 1V bubblesis a function of physical
characteristics of the individual measured prior to the test session. For the observed data, the cure rateis
zero for individuals who underwent tests that had interval-censored recorded times, and it is nonnegative
otherwise. In the next subsection, we will define the cure rate as a function of explanatory variables, and
give the resulting lognormd likelihood for interval and right-censored data. Later, we will compare the
LFP model to a non-mixture lognormal model, where both models are fitted using random subjects
effects.

5.1 Construction of the Limited Failure Population M odel

For the jth observation from the ith individual, define the indicator variable as

_11 iftheith subject will eventualy experience Grade IV VGE on theirjth test

4 _%0 otherwise

Although immunity to the event, Grade IV VGE, may be perceived as applying to individuas,

the indicator variable is defined for each observation within each individua. An individua will not
necessarily have a constant propensity for cure acrass repeated observations, as some covariate values
may change across measurements.

We make an assumption in this paper that the z; s are independent for al i and j, conditional on certain
modeled covariates as discussed in the next subsection. This assumption is vaid provided that all relevant
covariates have been included in the model. Thus, we assume that dependence between any two z; s
occurs only through shared covariate val ues.

If we assume that censoring times are independent of event times, and that observations from
different individuals are independent of one another, we can construct the likelihood as follows:
For an interval-censored observation with covariates, x;, the contribution to the likelihood is

Plto, <Tj £ 4,2 =1|x;;) = P(z; =1Ix; ) (Sttq, |%;) - S(t, Ix;;)) » for known left and right interval
endpoints t, and t - Similarly, for a Type | right-censored observation, the contribution to the
likelihood is P(to, < T,  =11x;) + Plto, < T, 2;= 01x;)= P(z; =1Ix;) Sltg, [x;) *+ P(z =00x;) -

Asnoted for model (1.1), the survival distribution Sis only defined for the non-cured population. The
survival distribution is aways 1 for the cured population.

If G(t.|x) representsthe survival function for the randomly right-censored time, ., then

a randomly right-censored observation’s contribution to the likelihood is

F’(to‘j < T, z; =1Ix3) + P(toij < T, z; = 0[x; )= P(z; =1]x; )G(toij Ix;;) + P(z; =0[x;) . If the

random censoring distribution G does not involve parameters of interest related to the covariates, then
G(t.|x) = G(t,) . Inthis case, the contribution to the likelihood from a randomly censored observation
becomes P(z; =1|x;;)G tq, ) + P(z; =0|x;) . If the randomly right-censored observations can be treated

as Type| censored observations, these observations contribute the same term to the likelihood as given
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for the Type | censored cases. This situation is desirable because it eliminates the need to specify the form
for G, with or without dependence on covariates.

Of the 425 right-censored observations, 11 cases were randomly right-censored. Because there were so
few randomly censored observations, we did not fedl it was statistically beneficial to include an additional
term in the likelihood for only these 11 cases. Moreover, our exclusion of the randomly right-censored
cases from parameter estimation procedures made little changes to the resulting estimates. So, we treat
the 11 randomly right-censored cases as though they were Type | right-censored.

The contribution by right-censored observations reflects the mixture aspect of the modd. A right-
censored observation would have a probability P(z; =1|x;;) of ever experiencing the event, and a

probability P(z; =0|x;) of beingimmune to the event. The probability P(z; =0|x;) isthecurerate
mentioned above.

Define the censoring indicator d;; to be 1if theijth observation is interval-censored and zero otherwise.
Denote the observed databy D ={x; oty ,dij; i =1,..,m ;i =1,...,n}, and denote a single data record by
Dij. The likelihood is then

L Ju
L(b,s,5,ID)=0 C‘)O Li(b.s.,s,ID;,h) N(h 10,s,) dh (5.1

i=1 i=1
where

L(b.s.s,IDy.b) =

1-d;

6P(z; =11, )(Sy, Ix;.0)- St Ix; B 8P(7, =11%,) S(t, x;.0) + P(z; =0[x,)l

Bogt- by- " bex - b0
and, S(t|X=(X1,...,Xp),b):|:g g 0 ;ak::L kX :
€ 2

We modeled the probability of an individual eventually experiencing Grade 1V bubbles on a given test as
alogistic function of the explanatory variables,

J & J 0
P(Zij :1| Xij) = exp(aO + a ak‘jk)/gl"- exp(ao + a ak)ﬁjk)i (5.2)

k=1 k=1 a
wherethe a, are parameters relating the covariates to the cure rate.

With these forms for the cure rate and survival distribution, L (b ,s,s ,|D;;,br) inequation (5.1)
becomes
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Llj(b S Sleu’ ):

" i
ge exp@, +a k—:l.a Xik) = 0 ae aq()gt; b - a Ezlbk)ﬁjk - 2_ . ?09'[0ij - by - a k)ﬂjk | f
s + s ++
gl"'e}(p(ao + a K= k)ﬂjk) g g p g %
. L(1-d)
. g exp@, +a = 1akX|Jk) (} ?09 - by - é. Ezlbk)ﬁjk -b 99+ 1 3
é +F 2 u
€1+eXp(a +a @ik g g S P 1+exp@, +a kpzlakxijk)g
(5.3

We refer to the parameters, b =(b,,b;,...., b,) aslocation parameters and to the parameters

a =(@g,a;,...a,), inthe curerate, as mixture parameters. If the location parametersin (5.3) are dl

distinct from the mixture parameters, the maximum number of distinct parametersin (5.3) is2(p + 1) + 1.
In many modeling situations, some of the mixture or location parameters are fixed at zero.

5.2 Estimation of the Parameter s from the Random Effects M oddls

We now fit two LFP random effects mode to the Grade IV VGE data and contrast ther fit with that of a
non-mixture model, which is actually a specia case of the LFP model, but with P(z; =1) =1for al i and

j. The models were fit using the structures given above, with the addition of arandom effect added to the
conditional mean log time to onset for each individua. Estimation was done in two steps. First, we used
MCMC sampling to sample redlizations of (b ,a,s,s,,b) from their joint posterior distribution. The
WinBUGS software version 1.3 (Spiegelhalter et a., 2000) was used for the computations. Independent
normal priors with mean 0 and variance 1,000 were chosen for the dementsin (b ,a,logs ,logs,).
Results did not appear to be sensitive to the parametric form of the diffuse prior specification. For
example, using gamma distributions for the standard deviations instead of normal distributions for the log
standard deviations did not change the results. Three chains of 2,000 samples each were run per model,
each starting from different initial values. One set of initia values for the MCMC procedure came from
direct maximization using Newton-Raphson’s algorithm, where observations were treated as independent.
(That is, random effects were ignored.) Basic convergence diagnostics, such as trace plots, and Brooks-
Gelman-Rubin Statistics (Brooks and Gelman, 1998) showed no evidence of lack of convergence of

the Markov chainsto atarget distribution. Univariate histograms of samples from the chains were all
roughly symmetrical, even for the standard deviation parameters.

Sample means from the combined three chains of output were used as starting values for a quasi-Newton-
Rapheson maximization of the integrated likelihood in (5.1). The integration was performed using Gauss-
Hermite quadrature, and was programmed in Mathematica 4.0. Thirty quadrature points were deemed
more than sufficient for the integration. Table 3 gives the approximate MLES of the coefficients for three
models. The first is a non-mixture model, and the others are LFP mixture models. Approximate standard
erorsin parentheses were obtained using the inverse of afinite difference approximation to the negative
of the Hessian of the log likelihood evaluated at the point estimates (Tanner, 1996, p. 74). No evidence

of the nonidentifiability of parameters was observed for any of the modelsin Table 3. Asymptotic
correlation matrices for Table 3 are in Appendix A.
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Table 3. Approximate Maximum Likelihood Estimates for Fitted Models

Non-Mixture Full LFP Reduced LFP
M odel MixtureModel Mixture M ode
-LogLH 552.237 549.683 550.635
AIC 559.237 558.683 557.635
L ocation Parameter

Estimates
bo 4.622 (0.491) 3.586 (0.502) 3.376 (0.403)
b, (SEX) -0.885 (0.347) - 0.491 (0.364)
b, (SAGE) -0.242 (0.122) 0.047 (0.146)
b; (S.TR360) -0.892 (0.149) -0.840 (0.143) - 0.864 (0.144)
b, (NOADYN) - 1.354 (0.350) -1.271 (0.336) - 1.359 (0.332)
s (scale) 1.299 (0.120) 1.064 (0.143) 1.121 (0.132)

Mixture Par ameter

Estimates
a; (SEX) 1.448 (0.839) 1.906 (0.917)
a, (SAGE) 1.306 (0.593) 1.416 (0.717)
Random Effects Par ameter

Estimates
Sy, (sd of random effects) 1.081 (0.161) 1.017 (0.150) 1.032 (0.150)
r corr(logt;,logt;-) 0.409 (0.151) 0.477 (0.159) 0.459 (0.157)

Certain physical characteristics may make a person immune to experiencing Grade IV VGE. The
variables SEX and S.AGE are suitable for modeling the probability of immunity. The explanatory
variables S, TR360 and NOADYN are likely only to influence the onset time of Grade IV VGE. Thus,
although we only consider SEX and S AGE for the mixture portion of any LFP models, we consider all
four variables for inclusion in the location portion of an LFP modd. Despite dight evidence in Tables 2a-
d of possible interactions among covariates, we did not consider interactions among covariates in this
report.

The first LFP model represented in Table 3 (called the full LFP mixture model) describes log survival
time as depending on al four of the explanatory variables. It a'so models the cure rate as depending on
two explanatory variables. SEX and SAAGE. The second LFP model (the reduced L FP mixture model)
describes log survival time as depending on two of the explanatory variables: STR360 and NOADY N.
It further models the cure rate as depending on two explanatory variables: SEX and S AGE. Other
configurations were tried, but none was uniformly better in terms of fit and accuracy of predictions.
Judging from the values of Aikaike's Information Criterion (AIC) in Table 3, the reduced L FP model
appears to be a better fit than either the non-mixture or the full modd. In addition, two of the location
parameter estimates in the full model (SEX and S.AGE) are much less than twice their standard errors,
indicating that these two variables are insignificant location parameters in the model.

Before we discuss additional assessments of mode fit and predictive accuracy, we will present a brief
interpretation of the meaning of the parameter estimates within each modd.
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Inter pretation of the parameter estimates

Negative location parameter estimates for a given explanatory variable imply that for two observations
differing by one unit in the variable, the expected log time to onset of Grade IV bubbles decreases by the
estimate given. According to the non-mixture model, for amale versus afemale, the expected onset time
is 0.885 log minutes sooner. Similarly, for two individuals who differ by one standard deviation in AGE
(approximately 7 years), the expected time to onset is 0.242 log minutes sooner for the older individual.
The remaining parameter estimates are interpreted similarly. For the reduced LFP model in Table 3, the
location parameter estimates share the same direction as those for the non-mixture model. In addition, for
amale versus afemale, the expected log odds of the probability of eventually experiencing Grade IV
VGE is 1.906 higher. For two individuals who differ by one standard deviation in AGE, the expected log
odds are increased by 1.416 for the older individual. Both of these imply that younger females are most
likely to be immune to Grade IV VGE, and older males are least likely to be immune to Grade IV VGE,
at least within the age range we model ed.

Two sources of variability are estimated for each model given in Table 3. The parameter s, describes
variability between individuals, and the parameter s  describes variability from a measurement error
not associated with between-individual variability. A relatively high estimate for s |, as compared to its
standard error may imply strong heterogeneity among individuals. An acceptable rule of thumb to apply
inthis caseisthat if the estimate of s is greater than twice its standard error, there is evidence of

significant heterogeneity among individuas. Table 3 shows that the estimates for s, are much greater
than twice their respective standard errors. Heterogeneity may result from idiosyncratic differences
among individuals or from differences associated with one or more covariates that were not modeled.
The relatively high estimate for s, results in moderate estimates of correlation between two log
responses on the same subject.

Also, the estimates of s, for both models are comparable to those of s . One reason for this may be

due to the small number of tests contributed by most subjects. In fact, 42% of the 238 subjects contributed
only one record, 30% contributed two records, and less than 5% contributed more than six records. Thus,
much of the variability in log event times is due to variability among individuals.

Next we will discuss goodness of fit and predictive accuracy of the two models represented in Table 3.

6. Goodness of Fit of Two Modelsfor Onset Time of Grade |V VGE

Goodness of fit of parametric models with interval censoring is not easy to check, particularly when the
recorded intervals are not fixed across subjects. Therefore, standard test procedures that use the prediction
of the percentages of eventswithin certain time intervals are not useful. In addition, if the covariates are
continuous, we may not be able to assess goodness of fit well by dividing the data into groups according
to the values on the covariates, and then comparing the nonparametric survival estimates to the predicted
survival curves. Also, with a high percentage of right-censored observations, it is difficult to get enough
interval-censored data within some of the groups.

In addition, residual plots are complicated due to the difficulty in, first, defining aresidua for interval
censored data, and, second, determining its sampling distribution under the hypothesis that a model is
correct. So, instead we describe a graphical goodness-of -fit approach that is useful in evaluating the
mode fits.
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6.1 Goodness of Fit Using a Graphical Method

The graphical approach we used involved a parametric bootstrap procedure. We bootstrapped interval
and right-censored observations from each of the fitted models with point estimatesin Table 3 and fixed
covariate patterns. Then, we calculated the Turnball estimate of the probability of Grade IV bubbles for
each bootstrapped sample and compared these Turnball curves to the data-based Turnball estimate and
95% simultaneous confidence bands (as we discussed in Section 3). The confidence bands describe the
uncertainty that is associated with the data-based Turnball estimate as an estimate of the actual or “true’
population-based curve. The population here might be individuals in smulated hypobaric conditions. So,
to the extent that the confidence interval endpoints contain curves from the parametric bootstrap from a
particular model, that model may be said to describe the population well. Alternatively, if thereisthe
possibility (under 95% confidence) that the “true” population Turnball curveislocated in areas where
there are no generated curves from a particular model, there is an unacceptably high chance that the data
did not originate from the same model. This reasoning assumes that the generated Turnball curvesfill the
entire range of possible curves generated from the model in question.

To reflect the dependency in the data, the parametric bootstrap procedure generated a random effect for

each individua from anormal distribution with mean zero and variance equal to the point estimate of s 2.
Repeated tests from a single subject al had the same random effect.

One hundred bootstrapped samples were drawn from each of the competing random effects models.
Details of the bootstrapping procedure are in Appendix B. After around 50 samples were anayzed, the
concentration of the resulting plotted Turnball estimates hardly changed. So, 100 samples were deemed
sufficient for graphical purposes. Figure 4 contains the resulting Turnball estimates of “failure” or
occurrence probabilities by time for the non-mixture model and the LFP models described in Table 3.
Each pand in the figure shows the 100 generated estimates for one of the models (the grayed lines),
superimposed with the original data-based curve based on the origina data (the dark solid line) and

the simultaneous confidence bands (dotted dark lines).

According to Figure 4, both LFP mixture models can generate Turnball nonparametric maximum
likelihood estimates that fall within the 95% confidence bands associated with the estimate computed
from the origina data. If the actual population Turnball curve falls within the dark dotted line (with 95%
confidence), that curve is consistent with either LFP model. The patterns for the two LFP models are very
similar, except the full model displays more variability — probably due to its two additional coefficients.
Also, the digtributions of Turnball points at each hour for the reduced LFP model appear to be negatively
skewed. Thus, fewer generated datasets had many observations with infinite event times for the reduced
LFP model than for the full LFP model.

The plot containing the samples drawn from the non-mixture model shows that almost al the generated
curves are close to the data-based curve and also fall within the 95% simultaneous confidence bands on
the data-based Turnball curve. However, within the 95% confidence bands are areas that are outside of
the range of generated curves. This may be indicative of a poor modd fit because the actual curve may
correspond to areas outside of the range of generated curves. Adding a mixture part to the model (aswas
donein the full and reduced L FP models) ensures that this situation will not happen and that the actual
population curve (with 95% confidence) is within the range displayed by the generated curves from the
model. As we mentioned in a previous section, this conclusion assumes that the bootstrap has generated
curves to cover the entire range that the model in question would predict. The assumption seems to hold
true, at least approximately, even though there are only 100 generated curves because the differencein
the range between 50 and 100 generated curves was minimal.
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Full LFP Model Reduced LFP Model

Proportion Failing
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Proportion Failing
0.0 0.1 0.2 0.3 0.4 05 0.6

Non-mixture Model

Proportion Failing
0.0 0.1 0.2 0.3 0.4 05 0.6

Hours

Figure 4. Goodness-of-fit graphs for three models: one non-mixture lognormal model and

two LFP mixturelognormal models. The dark solid line represents the Turnball nonparametric
probability estimate based on the observed data. The dark dotted lines are 95% simultaneous
confidence bands. The 100 grayed lines represent the Turnball estimates based on 100 samples
from the respective fitted model.

A generated dataset with many immune observations has a nearly flat Turnball curve. The presence

of SAGE in the mixture portion of the LFP models may cause some generated datasets to contain many
immune observations. The mixture coefficient on SAGE is positive for both models, which implies that
with increasing age, the probability of experiencing Grade IV VGE eventualy increases aswell. The
majority of the SAGE vaues were negative (dightly less than 60%), however, so age was below the
mean age of 31.85 years. A negative S AGE decreases the estimated probability of eventually
experiencing Grade IV VGE. Generated datasets of onset times that have many negative

SAGE vaues may have nearly flat Turnball estimates.

Based on the plotsin Figure 4, it seems that our data more likely originated from a model smilar to an
LFP mixture mode than from the non-mixture model. Furthermore, as given in the next section, general
predictive accuracy based on the non-mixture model is not as good as prediction based on the LFP
mixture model.
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7. Predictive Accuracy of Models

To compare the predictive accuracy of the models, we used K-fold cross-validation. Briefly, cross-
validation consists of leaving out K subsets of observationsin turn, fitting the model to the remaining

set of observations, then using the model to predict the values of the left-out subset. This process may

be repeated M timesto get M different groupings of K subsets. Cross-vaidation corrects for much of the
positive bias that results from predicting observations when those observations are used to fit the model.
We used an additional bias adjustment that corrects another “optimistic” bias; the procedure is called K-
fold Adjusted Cross-validation. For details of the adjustment, see Davison and Hinkley (1997). We
detail the procedure for our application in Appendix C.

Predictions, conditiona on the covariate values and censoring pattern, were obtained on log times

to Grade 1V bubbles. Error in prediction was assessed via a squared distance from the nearest interval
endpoint if the predicted value fell outside of the recorded interval, and the error was zero otherwise.
Predictions do not consider repeated observations made on the same individual . For computation of
the predicted log time, see Appendix C.

The top half of Table 4 contains results for two values of K (K = 10, 548), the number of subsets that

partitioned the dataset. The choice K = 10 is recommended by the rule of thumb, K = min(10, Jn ),
wheren isthe size of the data set (Davison and Hinkley, 1997). The choice K = 548 entails leaving out
each observation in turn. The table shows the results of the mean prediction error averaged over subsets
and over 100 repetitions (for K=10 only). The size of each subset islabeled asm The two values for K
give smilar results and, thus, lead to the same conclusion: namely that the LFP model predicts better than
the non-mixture model on a new dataset from the same population. Other choices of K led to very smilar
results as those seen in the table.

Table 4: Measure of Predictive Accuracy of M odels
(K-fold Cross-Validated Prediction Error)

Non-mixture Full LFP Reduced LFP
M odel Mixture M odel Mixture M odel
Number of Groups (Size
of Left-out group)
K =10 (m=55) 0.961 0.532 0.596
K=548(m=1) 0.961 0.532 0.594
Sample size used to fit
model:
n=25 1.005 0.751 0.636
n=35 0.991 0.698 0.636
n=>50 0.920 0.636 0.593

The bottom half of Table 4 contains results to get an idea of the sample size for which overfitting

begins to display itself. We randomly selected a small number of observations (n = 25, 35, or 50) from the
dataset and fit each model using that set. A sample size of 50 might be considered sufficient, whereas a
sample size of 25 may not be sufficient. Then we computed the averaged prediction error using the left-
out cases. We repeated this procedure 100 times for each model and took the median of the resulting
prediction errors. (The median was used instead of the mean because of some very large prediction
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errors). The median is displayed in the table. As we expected, prediction generally gets better for all
models as the sample size increases. But notably, the non-mixture model predicts poorly compared to the
two LFP models for all sample sizes. In addition, the reduced LFP model appears to perform dightly
better than the full LFP mode.

We note that although the parameter estimates can be expected to change dightly when al of the

data points are not used to fit the model, it is hoped that the parameter estimates do not change grosdy

for each fitting, or else there is a problem with highly influential points. That did not appear to be the case
here, as regards the first two rows of Table 4, where a substantia part of the data was used in the fitting.
However, that is not the case when using only 25 or 35 observations. Here, the parameter estimates
sometimes changed wildly due to different percentages of right-censoring. So, the last three rows of Table
4 redlly assess the stability of the structure of the model, not necessarily of the parameter estimates. Even
with 25 observations, overfitting does not appear to be a big problem for any of the models, but predictive
accuracy is again much worse for the non-mixture model versus the two mixture models.

The two mixture models are very close in predictive accuracy. Either model could be used for prediction,
giving smilar results. However, the reduced model has a dightly better predictive accuracy in the case of
the small sample size. It also has fewer parameters and, thus, a smaller AIC value. All of the coefficient
estimates of the reduced model exceed or come close to exceeding twice their standard errors. It is clear
that coefficients for SEX and S AGE do not belong in the location portion of the full model because of
their magnitude relative to their standard errors. We will therefore use the reduced LFP for specific
predictions in the next section.

8. Further Evaluation of the LFP Modd

Based on estimates from the reduced LFP Modd in Table 3, the estimated probability of remaining free
from Grade IV bubbles by agiventime, t, is

P(T>t)=Az=1)§(t) + P(z=0)(1) = P(z=11xT- F 2oL~ MK) m(X)OO+P(z 0[x) (8.1)
€ & 1121 g

where

m(x) =3.376- 0.864 STR360 - 1.359 NOADYN,

exp(1.906 SEX +1.416 S.AGE)

P(z=1|x) = ,
1+ exp(1.906 SEX +1.416 S.AGE)

S.AGE = (AGE - 31.85)/7.17, and STR360 = (TR360- 1.57)/0.263.

The complement of (8.1), the probability of experiencing Grade IV bubbles by a giventime, t, is

B(T £1) =P(z=1)(1- &)= ﬁ(zz]jx)F?oglt QTX)S (82)

For calculating predictions, the random effect term, b, , that appearsin (4.2) isnot used. Equation (8.2) is
called the cumulative distribution function (CDF). Plots of (8.2) are shown in Figure 5 for severa vaues
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of the explanatory variables, dong with 95% point-wise confidence intervals that were obtained assuming
asymptotic normality of the logit of the respective estimated probabilities and then back-transforming the
resulting interval to get a confidence interval on the probability itself. The confidence intervals are not
symmetric, but they are aways contained within 0 and 1 (Meeker and Escobar, 1998). The upper points
of the intervals are represented by dashed lines, and the lower points are represented by dotted lines. For
all four plots, the higher dashed lines and the higher dotted lines correspond to the higher solid lines,
representing the point estimates.

Figures 5a and 5b compare probabilities by time at atitude for males and females ages 27 and 40,
respectively (to contrast younger and older ages), with atissue ratio of 1.5, and who are lower body
adynamic. The ages 27 and 40 years were chosen to represent “younger” and “older” because of the
numbers of males and females at those ages in the dataset. There were nine females and 39 males at age
27, and five females and six males at age 40. (The number of females at any age was less than 10.)

According to the predictions, males have higher probabilities of Grade IV bubbles than do females

at dmost al hours at atitude, but the differenceis very dight for an age of 40. The dight difference
between the male and female curves at an age of 40 (as compared to the larger difference at an age of 27)
is caused by the mixture probability being dominated by the exponential of SAGE timesits coefficient,
when SAAGE increases to alarge positive value. The standardization of 40 yearsis about 1.14, whereas
the standardization of 27 yearsis negative (- 0.68). The same reason also explains the larger standard
errors when SAGE is positive: that is, the expression for the standard error (at a given time) contains
the exponentia of SAGE timesits coefficient. Also, there are more observations at age 27 (n = 48)

than there are at age 40 (n = 11).

Figures 5¢ and 5d compare predicted probabilities by age for different tissue ratios and adynamic

versus ambulatory individuals, respectively. For both graphs, only males are considered, staying atota
of six hours at atitude (i.e., time = 6 hours). For Figure 5c, the individual is considered to be lower body
adynamic. For Figure 5d, the individual has atissue ratio of 1.5. For both plots, the probability estimates
increase with age, then flatten out as age increases beyond its mean in the dataset (about 32 years). Also,
at any age, the higher tissue ratios have higher estimated probabilities as do ambulatory individuds, with
tissue ratio held constant. The negative acceleration pattern that is seen in Figure 5d actually occurs for
ambulatory and adynamic individuas. The range of the vertical scale hides the pattern for the adynamic
curve. The same general pattern in the predictions occurred for other hours besides six hours.

Together, the panels in Figure 5 seem to predict interactions between age and the other variablesin their
influence on probability of Grade IV VGE at a given time point. For example, the predicted difference in
probability of Grade IV VGE between an adynamic and ambulatory individual at time = 6 hours depends
on the age of the individual. It is greater at a higher age. Figure 5 may signal the need for an interaction
term in the model, although we do not explore this idea further here.

A comparison of Figure 5 with Figure 6, which has the anal ogous predictions from the non-mixture
model, shows mean predictions that are generaly in the same direction, abeit somewhat larger overal.
There are severd differences, however. First, when ageisfixed at 40 years, the difference in the CDFfor
males versus femaes for the non-mixture model widens at ailmost all time points, as compared to when
ageisfixed at 27 years. Thisisin contrast to Figure 5, where the anal ogous graphs for the reduced LFP
model show a narrowing of the CDF when age is fixed at 40 years, as compared to when age is fixed at
27 years. The narrowing in Figure 5 is due to not having SAGE or SEX in the location portion of the
moddl. Predictions from the full LFP model (not shown) show a dight widening as well, but not as much
as for the non-mixture modd. The full model had S AGE and SEX in both mixture and location portions.
When AGE begins to increase, both LFP models have mixture portions that are dominated by the SAGE
term, and the mixture portion goes toward 1.0 for both sexes as S AGE increases. For the reduced LFP
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model, however, the location portion stays fixed when S.AGE changes, so the CDFs for males and
females grow closer together. For the full LFP mode, the location part changes when S AGE and SEX
change, and the change compensates for the mixture portions going toward 1.0, causing the CDFsto
remain substantially apart. The full LFP model showed similar predictions to Figures 5¢ and 5d.
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Figureb5. Estimated probabilities of Grade IV VGE, with 95% point-wise confidenceintervals, as
predicted by the reduced LFP Model. Dashed lines are upper points of theintervals; dotted lines are the

lower points. The solid lines are point estimates.
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Figure 6. Estimated probabilities of Grade IV VGE, with 95% point-wise confidenceintervals, as
predicted by the non-mixture model. Dashed lines are upper points of theintervals; dotted linesare
thelower points. The solid lines are means.

Differences in mean predictions across tissue ratio and adynamia status become increasingly larger
over age for the non-mixture model. Thus, for the non-mixture model we also see evidence of predicted
interaction between age and other explanatory variables. However, in the dataset, the CDFs do not level
off after age increases past the mean.

Thus, in comparison with a non-mixture mode!, the LFP model predicts on average, somewhat smaller
probabilities of Grade IV VGE — as judged by comparing the vertical axes across the two figures. The
differences in predictions across tissue ratios and adynamia status appear to increase over age, and then
stabilize as age increases beyond the mean of about 32 years; for the non-mixture model, the differences
continue to increase. The empirical proportions of Grade |V incidence by age categories and adynamia
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status, as given previoudy in Table 2d, did not indicate an increasing gap in Grade 1V incidence across
adynamia status as age increased. Empirical proportions (not shown) of Grade IV incidence by age and
TR360 categories also did not indicate increasing differences when comparing tissue ratios across age.
However, whether the proportions in Table 2d are consistent with the stabilizing differences seenin
Figures 5c and 5d is hard to infer.

Figures 5a and 5b versus Figures 6a and 6b make different predictions regarding the probability of

Grade 1V VGE over time for males and females at different ages (27 and 40 years). Although the figures
show only two ages, generaly as age increases, the reduced LFP model predicts that males and females
have increasingly the same CDF; the non-mixture model, on the other hand, predicts that the CDFs for
males and females remain different as age increases. The reduced LFP model predicts that when atissue
ratio is around 1.5, after a certain age — perhaps 40 years— lower body adynamic males and femaes are
equally susceptible to Grade IV VGE. A comparison of the predicted CDFs to the empirica proportions
given in Table 2c appears to corroborate the predictions of the non-mixture modd in that the differencein
Grade IV incidence for males versus femalesis higher for the 40 — +60 age category than for the 19 —+30
age category. However, the number of females beyond age 40 is relatively small. Also, the difference is
lower for the 30 — +40 category, which would seem to support the reduced LFP model.

9. Discussion

We have fit two different types of models to the Grade IV VGE data: (1) alimited failure population
lognorma mixture model and (2) a traditional lognormal non-mixture mode. The reduced LFP mixture
model appearsto be adightly better fit, as evidenced by its AIC value in Table 3 and the discussion of the
goodness-of -fit graphs in Figure 4. Also, the LFP mixture model gives more accurate predictions overal,
as seen in Table 4. However, a comparison of specific predictionsin Figures 5 and 6 to cross-tabulations
in Table 2 (a-d) do not appear to overwhemingly favor either the non-mixture or the LFP mixture model.

An dternative to the reduced LFP modd is to use the full LFP model. This model had good predictive
accuracy and a good fit to the data. Moreover, the full model did not predict a narrowing differencein
probabilities of Grade IV VGE by time across ages 27 and 40 for males and females. However, according
to the asymptotic standard errors that we computed, the two extra parameters the model contained over
the reduced model were clearly not significantly different from zero.

In Figure 7, we show boxplots of the predicted probabilities of eventualy experiencing Grade IV VGE
during an exposure for each of the two LFP models. The probabilities were computed for the covariate
combinations in the dataset and the estimatesin Table 3 and in equation (5.2). The boxes contain the
middle 50% of the probabilities, and the horizontal lines with dots in the center represent the medians.
Within the whiskers are 95% of the data. The two boxplots are somewhat similar; indeed, they show
predictions dmost anywhere between 0.20 and 1.0. However, the distribution of probabilities from the
reduced model contains the bulk of its values at a higher probability. So, the reduced model may be
more suitable for a population expected to contain few individuas immune to Grade IV VGE, where
immunity is determined largely based on age and sex.

As a predictive model, the reduced LFP mode of Table 3 isthe best of the models presently investigated
to predict the onset of Grade IV VGE in the population of volunteer subjects undergoing altitude chamber
tests. A third LFP was investigated that contained the same parameters as those of the reduced LFP, but it
also contained SAAGE in the location portion. The fitting of this third LFP model was almost identical to
that of the reduced LFP mode.
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Figure 7. Boxplots of predicted probabilities of eventually experiencing Grade |V VGE
for two LFP models.

10. Limitations and Extensions

We have shown that alimited failure population model might suitably describe the onset of Grade IV
VGE in volunteer subjects undergoing testing in altitude chambers. The reduced LFP mixture model that
is shown in Table 3 seems an appropriate candidate for prediction of onset time. This model is appropriate
in a situation where age affects the predisposition for Grade 1V VGE, but does not influence its rate of
occurrence in asituation where Grade 1V VGE will occur eventually. The general predictive ability of

a non-mixture for future observations similar to the current set of observations does not appear to be

as good as that of the LFP modd we fit.

It is possible that other physical characteristics beside age and sex influence immunity to Grade 1V
VGE. One of these variablesis body weight or body mass. Body mass was measured for individualsin
the current dataset, but a decision was made early by the original researchers not to include this variable
in their analysis because it had low predictive ability. Itsinclusion in an LFP model may hep predictive
ability, however. It a'so may be necessary to look more closely at interactions among certain covariates,
such as TR360 and NOADY N, aswell as AGE and SEX.

More flexible models might be considered. For example, the generalized-F distribution, which contains
the log normal distribution as a specia case, can be used (Peng et al., 1996). To apply this distribution to
intervalcensored data may be practically quite complicated. A Bayesian approach might make the model
fitting easier. A Cox model with frailties is another alternative model. At least one study (Chhikara et al.,
2000) has shown the superiority of the Cox model applied to onset of DCS, as opposed to parametric
models such as the log normd or log-logistic. Whether this superiority remains when thereis also interval
censoring and dependent observations will be addressed in the future. We should note that a completely
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non-parametric model may not be possible we have only afew observed occurrences of Grade IV VGE in
theright tail of the survival distribution.

Finaly, the dataset we analyzed in this study contained many right-censored observations. Although
the likelihood accounts for right-censoring, we did not specifically address the effect, if any, that heavy
censoring may have in our goodness-of -fit procedures. Since heavy right-censoring is common in data
obtained from altitude chamber tests (Koti et a., 1998; Chhikara et a., 2000; Conkin et a., 1998), this
is apotential concern and limitation in our analysis.
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Appendix A: Asymptotic Correlation Matrices for Fitted M odels

Non-Mixture M odel

bo by (SEX) b, (SAGE) b3(S.TR360) bs(NOADYN) logs log sp
b 1.000
b; (SEX) -0.613 1.000
b, (S AGE) -0.207 0.150 1.000
bs (S.TR360) -0.271 -0.001 0.022 1.000
bs (NOADYN) -0.671 -0.047 0.111 0.159 1.000
logs 0.350 -0.098 -0.069 -0.273 -0.130 1.000
log sp 0.350 -0.159 -0.112 -0.080 -0.179  -0.075 1.000
Reduced L FP Mixture Mode
bo a; (SEX) a,(SAGE) b3(STR360) bs(NOADYN) logs log sp

bo 1.000

a; (SEX) 0.463 1.000

a, (SAGE) 0.295 0.810 1.000

bz (S.TR360) -0.317 -0.077 -0.015 1.000

bs (NOADYN)  -0.824 -0.123 -0.126 0.140 1.000

logs 0.490 0.472 0.242 -0.268 -0.155 1.000

log sp 0.310 0.149 0.102 -0.074 -0.163  -0.046 1.000

Full LFP MixtureM odel
bo by a bs ar bs by logs logsp
(SEX) (SEX) (SAGE) (SAGE) (STR360) (NOADYN)

b 1.000
by (SEX) -0.426 1.000
a; (SEX) 0.418 0.272 1.000
b, (S AGE) -0.365 0.016 -0.335 1.000
a, (SAGE) 0.194 0.162 0.727 0.085 1.000
b3
(S.TR360) -0.258  -0.075 -0.149 0.077 -0.037 1.000
b4
(NOADYN) -0.653 -0.151 -0.257 0.140 -0.175 0.155 1.000
logs 0.458 0.164 0.607 -0.309 0.290 -0.300 -0.249 1.000
log sp 0.361  -0.036 0.252 -0.169 0.107 -0.094 -0.191 0.056 1.000



Appendix B: Details of the Parametric Bootstrapping procedure

Let{a,,...,a,} and { 60, 61 64} denote point estimates of the mixture and location parameters,
respectively, for the models studied. Note that some of these estimates will be zero. In particular, for the
non-mixture model all of {d,,...,a,} will bezero. Also, let S and S, be point estimates of the scale
parameter and standard deviation of random effects (on the log scale), respectively.

For i = 1 to 238 subjects, and for j = 1to n; tests, each with prescheduled time at altitude, ALTTIME; and
recorded interval, (t, t l:

(1) Draw arandom effect, by , from anormal distribution with mean 0 and standard deviation, S, .

(2) Dividethetime axisfrom 0to ALTTIME; hoursinto aternating four-minute monitoring
intervals and 12-minute non-monitoring, or “resting,” intervals. This scheme reflects the intervals
of assessment designed in the study. (Naturally, not all time axes between 0 and ALTTIME; divided
evenly into four- and 12-minute intervals. In cases where the time axis does not divide evently, we
truncated the ending interval to fit the time frame.)

(3) Using the values on the explanatory variables, x;;, with probability in (5.2), generate arandom
variate, T;;, from alognormal distribution with location parameter, m= 60 + é 5:16199 ik and scde

parameter, S =S . Otherwisg, let T; = ¥ .

That is, use (5.2) to compute the estimated probability that the observation will eventualy
experience Grade IV VGE. (For the non-mixture model, the probability is one.) With this probability,
the generated random variate comes from the indicated lognormal distribution. Otherwisg, it is
infinite. Note that the set of covariates x;; used for location and mixture portions may differ.

(4) Smulate Type | right-censoring: If Ti; < ALTTIME;;, determine which interva Tj; falsin by
comparing T;; with the divided time axisin (2). Record an interval for T;;, using the following scheme:
(8 If T; flls within a 12-minute “resting” interval, record the 12-minute interva; (b) if T;; fallswithin
afour-minute monitoring interva (not including the first four-minute interval), record the endpoints
of the 12-minute resting interval that comes immediately prior to the four-minute interval; (c) if Tj;
falls within the first four-minute interval, record the interval from time zero to T;;; and findly, (d) if
T; > ALTTIME;, or if T falswithin the final 12-minute interval (if thereisafina 12-minute
interval), call the observation Type | right-censored at ALTTIME;.

Theinterval scheme described in (2) above did not appear to greetly influence goodness-of -fit plots.
Infact, we tried many different schemes, including intervals of one fixed width, and the results were
virtually identical.

Note that we did not simulate random censoring, because none of our models accounted for the sparse
existence of random censoring in the data. These cases were instead treated as Type | censored.

31



Appendix C: K-fold Adjusted Cross-Validation Procedure for GIV VGE models

We assessed the aggregate prediction error of each model using a K-fold cross-validation algorithm.

In general, K-fold cross-validation repeatedly splits the datainto K digoint sets of nearly equal size (say,
Ci,..., C). These K setsdefine K different splitsinto training and test sets, with each set C in turn acting
as atest set and the remaining sets together acting as atraining set. Prediction error is then calculated
once for each observation, and the average prediction error is obtained. This average is called the K-
fold cross-validation estimate of prediction error (e.g., Davison and Hinkley, 1997). A practical

rule of thumb isto take K = min(n*?, 10).

A further adjustment corrects for a bias on the order of 1/(K- 1) in the K-fold cross-validation estimate of
prediction error. This adjustment adds a term that represents the resubstitution error minus the sum of the
averaged prediction errors resulting from using the mode fit to each of the K subsets, in the proportion
each subset comprisesin the data. The following steps may clarify the agorithm (see Davison and
Hinkley, 1997, p. 294-295 for full details).

Algorithm for K-fold Adjusted Cross-validation

(1) Fitthemodd toadl cases{/ =1,..., n =548} . Obtain predicted log times for the ¢ th case using

i~ & - _ N i »
- iby +aQ X b, Wwithprobability (P(z =1|a,x /

rT’(X{,F):Q)gt[::' 0 J_:lxik k p y( (z, | ,,))

i

1y otherwise
where d, isdefinedin (5.1).

(2) Compute the averaged squared error using these predicted values,

D(ﬁ,ﬁ) :n'lé c{logtof, Iogtiﬁ, n{x,, If)}
/=1

where

10 if logt, £ m(x,F) £ logt,

% min{ | logt, - n(x,[f)| | logt, - m(x, IE) |})2 otherwise

—_—

c{logto, logt,, m(x, lf)} =

(3) Dividethe casesinto K digoint groups of sizes (approximate equal) m1, ..., mK

Foreachk=1,..., K,

(4) Fitthe model to all data except cases in the kth group.
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(5) Cdculate predictionsfor all observations using this model, and caculate

D(F,F.,) :n'lén‘ c{logtoﬁ, logt, , m(x,, If_k)}

(=1

(6) Cdlculate the K-fold cross-validation estimate of prediction error:

k

o3

1

C{|09to‘ ,logty , my (X, F’\k)}

Qox

Dev k =n

=
1

1 i

1

(7) The adjusted estimateis
N . ~ ~ & m, A A
DACV,K _DCV,K+D(F'F)' TD(F'F.k)
k=1
(8) Repeat steps (3) through (7) M times, and average the prediction errors.

Note that in this algorithm, the predicted values are the log times to onset (which may be infinite), and
that the error in prediction is defined by the distance of the predicted value from the nearest endpoint of
the recorded interval, if the predicted value falls outside of the interval, and zero otherwise.
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