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Abstract 

 
Venous gas emboli (VGE) (gas bubbles in venous blood) are associated with an increased risk of 
decompression sickness (DCS) in hypobaric environments. A high grade of VGE can be a precursor to 
serious DCS. In this paper, we model time to Grade IV VGE considering a subset of individuals assumed 
to be immune from experiencing VGE. Our data contain monitoring test results from subjects undergoing 
up to 13 denitrogenation test procedures prior to exposure to a hypobaric environment. The onset time of 
Grade IV VGE is recorded as contained within certain time intervals. We fit a parametric (lognormal) 
mixture survival model to the interval- and right-censored data to account for the possibility of a subset of 
“cured” individuals who are immune to the event. Our model contains random subject effects to account 
for correlations between repeated measurements on a single individual. Model assessments and cross-
validation indicate that this limited failure population mixture model is an improvement over a model that 
does not account for the potential of a fraction of cured individuals. We also evaluated some alternative 
mixture models. Predictions from the best fitted mixture model indicate that the actual process is 
reasonably approximated by a limited failure population model. 
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1. Introduction 
 
Humans exposed to hypobaric environments, such as astronauts performing an extravehicular activity 
(EVA), typically experience the formation of gas bubbles in venous blood as a result of decompression. 
The reduction in pressure from the space shuttle or a space station to a pressurized space suit can cause 
nitrogen gas, which is normally dissolved in body fluids and tissue, to escape from solution too rapidly, 
resulting in the formation of bubbles in tissue and blood. The movement of gas bubbles into venous blood 
is called venous gas emboli (VGE). In most cases, the lungs filter out the bubbles prior to any danger of 
their being passed to arterial blood, where they may block the pulmonary artery or lodge in the brain. In 
some cases, however, especially those cases where an individual has a patent foramen ovale (PFO), there 
is the chance of bubbles traversing to arterial blood. Briefly, a PFO is an opening in the heart between the 
right and left arterial chambers that allows the passage of bubbles into arterial circulation and critical 
tissues. The presence of these circulating gas bubbles in the blood stream could contribute to serious 
hypobaric decompression sickness (DCS). For a further description of the process, see Bove (1998). 
 
Types of DCS are distinguished by seriousness. The symptoms of Type I DCS are milder and include 
joint pain, or “the bends,” in the elbows, knees, or shoulders. The symptoms of Type II DCS (“serious” 
DCS) are neurological (e.g., memory loss, unconsciousness, stroke), cardiac, or pulmonary (e.g., deep 
chest pain caused by bubbles blocking the pulmonary artery); Type II DCS can be fatal if it is not treated 
immediately. This is particularly problematic for astronauts performing an EVA because of the lack of 
quick rescue capability. To reduce the risk of the occurrence of VGE, astronauts typically breathe 100% 
oxygen prior to EVAs. Prebreathing oxygen helps to eliminate nitrogen from tissues, and reduces the 
number of circulating bubbles while at altitude and during the EVA. 
 
Prebreathe procedures are evaluated in altitude chambers prior to their use on spaceflight missions by 
tests that produce low-pressure conditions. In these tests, the existence of VGE is typically monitored 
using Doppler detection, and the extent of bubble signals is measured in grades using the Spencer scale 
(Spencer, 1976). Spencer scale grades range from Grade 0 (i.e., the “absence of bubble signals in cardiac 
cycles” to Grade IV (i.e., “bubble signals are detected continuously throughout the monitoring period, 
overriding the amplitude of cardiac motion and blood flow signals”). The lower the grade in the scale, 
the lower the apparent number of bubbles. Conkin et al. (1998) describe the connection between VGE 
and DCS in more detail. 
 
The effectiveness of each prebreathe procedure can be measured by the percentage of cases of high 
bubble grade (Grade IV or above) produced in simulated low-pressure conditions (e.g., in an altitude 
chamber). Grade IV bubbles are of concern because they are associated with an increased risk of Type II 
DCS, especially for individuals with a PFO. So, the choice of a particular denitrogenation procedure for 
use prior to an EVA will depend on the effectiveness of the procedure in avoiding Grade IV bubbles 
and, thus, potentially serious DCS. 
 
Previous research on statistical modeling of the time to onset of DCS in high-altitude conditions has dealt 
with right-censored data and a single parametric form of the survival distribution for the entire population 
under study. The nature of DCS onset is such that risk rises with time, reaches a maximum, then declines 
(Conkin et al., 1996). As such, a commonly used hazard model for time to onset of DCS is the log-logistic 
or log-normal hazard functions. Conkin et al. (1996) used a log-logistic model for the time to onset of 
DCS symptoms, with covariates related to tissue ratio (a measure of nitrogen decompression stress) and 
exercise at altitude. The authors also described survival models for modeling the onset of VGE detection 
from Doppler ultrasound. Kumar and Powell (1994) modeled log time to onset of DCS as a parametric 
function of the explanatory variables, tissue ratio, and presence of circulating microbubbles in venous 
blood. Kannan and Raychaudhuri (1998) fit both parametric (log-logistic) and semi-parametric (Cox) 
models to DCS data from individuals in hypobaric chamber tests. For each individual, the se authors 
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considered the time to onset of DCS symptoms as well as several explanatory variables such as exercise 
at altitude, amount of time spent prebreathing oxygen prior to exposure, maximum bubble grade using the 
Spencer scale, and pressure at altitude. In addition, Koti et al. (1998) used log-logistic and log-normal 
models for modeling time to onset of DCS, using heavily right-censored data from the NASA hypobaric 
decompression sickness databank (HDSD). Chhikara et al. (2000) later used Cox’s proportional hazards 
model on the same dataset. 
 
Limited Failure Population Models 
 
Conkin et al. (1996) suggested that under certain circumstances, there are some individuals who will 
never get Grade IV VGE no matter how long they remain at high altitude. Thus, it may not be ideal to use 
an ordinary survival model for modeling the time to onset of DCS or its related causes. Limited failure 
population (LFP) models in survival analysis have often been applied in the biostatistical and medical 
literature where it is known or assumed that some fraction of the population (the “cured” fraction) will 
never experience the event under study. Maller and Zhou (1996) provide a complete history of these 
models. 
 
The application of a survival model for an LFP typically involves a mixture model, which can be a 
standard mixture of several different models or a nonstandard mixture model where one component is 
degenerate. For example, in clinical settings where the endpoint under study is death due to disease, the 
survival function can be expressed as a mixture model with different component survival distributions for 
death due to different causes, including the one under study, as well as “normal mortality”. The resulting 
model is a standard finite mixture model in which mixture components may or may not depend on 
covariates, and the survival distributions for each competing risk may or may not be completely 
parametric. Examples of this type of LFP mixture model appear in Gordon (1990), Kuk and 
Chen (1992), and Larson and Dinse (1985). 
 
In situations where the endpoint under study occurs by only one known means (e.g., paralysis due to 
excess radiation or onset of hypoxia due to low atmospheric pressure) or where competing causes of the 
endpoint are not observable (e.g., relapse of cancer caused by overgrowth of any number of cancer cells), 
the resulting mixture representation of “cured” and “non-cured” individuals becomes degenerate in the 
cured component. That is, the survival distribution becomes degenerate at 1 for cured individuals, with 
infinite failure times. The mixture model originally proposed by Berkson and Gage (1952) models the 
population survival function as a mixture of a standard survival distribution and a degenerate survival 
function with point mass at 1. Thus, the survivor function for the entire population is 
 

( ) ( ) 1popS t S tπ π= + −       (1.1) 
 
where ( )S t  is the survivor function for individuals who will experience the event, and π  represents the 
probability of eventually experiencing the event, given enough time. A nice feature of model (1.1) is that 
because ( ) 0S ∞ = , as for an ordinary survival distribution, ( ) 1popS π∞ = − , so that 1 π−  denotes the 
“cure rate” of the population. 
 
Examples of (1.1) as an LFP mixture model are found in Berkson and Gage (1952), Farewell (1982), 
and Taylor (1995). Farewell (1982) describes a logistic -Weibull mixture applied to fish toxicology data, 
where the Weibull model is used for the survival distribution and a logistic model is used for the cure 
probability. Taylor (1995) and Kuk and Chen (1992) describe semi-parametric versions of this model 
using, respectively, a Kaplan-Meier estimator for the survival distribution and a proportional hazards 
structure with an unspecified baseline hazard function. 
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Although the form of model (1.1) is simple, it can be attractive in certain circumstances, such as 
clustering of observations and the presence of interval censoring. Because of its simplicity, the use of 
model (1.1) with a parametric survival distribution can make both estimation and assessment of goodness-
of-fit and predictive validation easier. Model (1.1) is also easy to interpret, and its mixture structure may 
already be familiar to researchers. Thus, it serves as a nice start from which a more flexible model can 
be constructed. The aim of our paper is to apply this relatively simple model to a dataset with interval- 
and right-censored measurements, with the addition of random effects to handle clustering of 
observations. 
 
We fit an LFP model for predicting the time to onset of Grade IV venous gas bubbles. To achieve this, we 
use a NASA databank consisting of test results from volunteer subjects undergoing monitoring for VGE 
under hypobaric conditions. All of the observations were either interval- or right-censored, and some of 
the individuals tested performed more than one test, thereby providing multiple records in the dataset. 
Measurements on certain explanatory variables known to be associated with DCS were also recorded 
for each subject. 
 
Since we assume a priori that individuals who are immune to Grade IV bubbles are present in the 
population under study and also in the dataset at hand, there will be no formal test for the presence of 
immunes. We base our decision on examination of the physiological circumstances surrounding DCS, and 
on the fact that our dataset may not have sufficient follow-up to be able to test formally for the presence 
of immunes. Maller and Zhou (1996) discuss formal testing and its limitations. 
 
The remainder of this paper proceeds as follows. Section 2 gives a description of the data, testing 
procedure, and explanatory variables measured. Section 3 explores nonparametric survival distributions. 
Sections 4 and 5 describe the model fitting. Section 6 provides an assessment of goodness of fit. Section 7 
discusses predictive validation. Section 8 addresses predictions for the fitted models. And, Sections 9 and 
10 include discussion and extensions. 
 
 

2. Description of the Data and Testing Procedure  
 
NASA’s HDSD (Conkin et al., 1992) contains monitoring test results from human volunteer subjects 
undergoing denitrogenation test procedures prior to exposure to low pressure. The exposure records are 
from 453 males and 96 females who participated in a total of 28 different test procedures from 1983 to 
1998. However, because some subjects participated in more than one test procedure, the number of 
individuals tested was 238 (of which 177 were male). Each test involved one decompression, and is 
described generally in the next subsection. The highest number of test results contributed by a single 
individual was 13. The median number of test results was two. The recorded data did not provide 
information on the order in which the tests were taken. 
 
2.1 Testing Sessions and Recorded Data 
 
Each testing session was scheduled to last anywhere between two and six hours; the median was three 
hours. Subjects were tested in groups of one or more individuals. A subject’s group designation was not 
included in the recorded data, although multiple records by a single subject were indicated. There were 
two major phases during a typical testing session. In the first phase, the subject prebreathed 100% oxygen 
at site pressure while sitting. In the second phase, the subject was brought to “altitude” where he/she was 
monitored for Doppler-detectable bubbles. During this second phase, the subject performed a variety of 
repetitive exercises, mostly while standing. He or she also walked to as many as three exercise stations 
and to a bubble monitoring station. Bubble monitoring was scheduled to begin at approximately every 16 
minutes while a group of subjects was at altitude. However, according to the data, monitoring sometimes 
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began after intervals of over a half hour. Each monitoring session was scheduled to last for four minutes, 
where the subject flexed the limbs in sequence to improve bubble detection. 
 
If Grade IV bubbles were detected within a monitoring interval, the recorded datum for the subject 
was the interval between the end of the last monitoring period and the beginning of the interval in which 
Grade IV bubbles were detected, no matter the point in the monitoring interval in which Grade IV bubbles 
were detected. Thus, these cases were interval-censored. If Grade IV bubbles were not detected during the 
entire test session, the recorded onset time was right-censored at the end of the session. These right-
censored observations were considered to be Type I right-censored (Lawless, 1982). If the test was 
stopped for any reason prior to the end of the session, the observation was right-censored at that time. 
Observations, which corresponded to tests stopped prior to the prescheduled time at altitude, were 
considered randomly right-censored. A test was never stopped during a monitoring interval. 
 
Of the 549 records, 124 were interval-censored (i.e., Grade IV bubbles were detected), leaving over 75% 
of the cases Type I right-censored and 2% random right-censored. Due to equipment failure, the interval 
for one observation lasted about 104 minutes. This observation was discarded, leaving 548 records from 
the 238 individuals tested. 
 
2.2 Explanatory Variables 
 
Explanatory variables included experimental variables and physical characteristics of the subjects. The 
variables and their summary statistics are given in Table 1. The importance of these variables in DCS is 
well-documented (Carturan et al., 1999; Conkin and Powell, 2001; Sulaiman et al., 1997; Webb et al., 
1999). The first variable (TR360), a measure of decompression stress, is the ratio of the partial pressure of 
nitrogen at altitude to ambient pressure prior to ascent. A theoretical compartment with a half-time of 360 
minutes was used to model nitrogen elimination and obtain the value of the explanatory variable, TR360 
(see Conkin et al., 1996, for information on the development of TR360 and its recording in the HDSD). 
The greater this ratio is above 1.0, the more quickly we would expect to detect high bubble grades. The 
variable NOADYN indicated whether the test subject was ambulatory (NOADYN = 1) or lower body 
adynamic (NOADYN = 0) during the session. The variable SEX was coded male = 1 and female = 0. 
The mean of SEX shown in Table 1 is slightly misleading because although 83% of the 548 test 
records were contributed by males, only 74.4% of the 238 individuals were male. 
 
 

Table 1: Explanatory Variables Measured on Each Case 
 

 TR360 SEX AGE NOADYN 
Minimum: 0.94 0.00 20.00 0.00 

Mean: 1.57 0.83 31.85 0.85 
Median: 1.68 1.00 30.00 1.00 

Maximum: 1.89 1.00 54.00 1.00 
SD: 0.26 0.38 7.17 0.36 

 
 
In what follows, we will refer to the entire dataset of interval- and right-censored observations, along with 
measured explanatory variables as the Grade IV VGE data. 
 
2.3 Data Characteristics  
 
To provide initia l insight into the characteristics of the data and to facilitate further discussion, 
we constructed several cross-tabulations of explanatory variables by proportion of Grade IV VGE 
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occurrence. TR360 was categorized into quintiles, and AGE was categorized into groups: 19 – +30,  
30 – +40, 40 – +60. The categories for AGE were chosen to divide the age group into younger, middle, 
and older age categories. Three categories were chosen to have enough data fall into each category. Table 
2a shows the proportions for TR360 and NOADYN status, Table 2b shows the proportions for SEX and 
NOADYN status, and Tables 2c and 2d show the proportions for SEX by AGE, and NOADYN status by 
AGE, respectively. No formal hypotheses were tested using the tabulations. 
 
Not surprisingly, the proportion of Grade IV cases in the dataset increases with higher categories of 
TR360. According to Table 2a, however, when the sample is categorized by NOADYN status, there is an 
increasing incidence of Grade IV VGE by TR360 for ambulatory subjects, but there does not appear to be 
a similar trend for the adynamic subjects. Notice, too, that the proportion of Grade IV cases for Adynamic 
subjects is higher than the proportion for Ambulatory subjects in the TR360 range [0.94, 1.35). For all 
other TR360 categories, the proportion for Ambulatory subjects is higher than for Adynamic subjects. 
This may be indicative of a slight interaction between TR360 and NOADYN in their influence on 
Grade IV occurrence. However, some of the sample sizes in the Adynamic categories may be too 
small to provide reliable proportions of Grade IV VGE. 
 
 

Table 2a: Cross-Tabulation of TR360, NOADYN, and Grade IV VGE 
 

 TR360* 

 0.94+ – 1.35 1.35+ – 1.68 1.68+ – 1.77 1.77+ – 1.89 
  

NOADYN=0 (Adynamic) 

No GIV VGE 16/19 = 0.84 14/14 = 1.0 22/23 = 0.96 24/28 = 0.86 
GIV VGE 3/19 = 0.16 0/14 = 0.0 1/23 = 0.04 4/28 = 0.14 

  
NOADYN=1 (Ambulatory) 

No GIV VGE 107/113 = 0.95 91/124 = 0.73 126/191 = 0.66 13/24 = 0.54 
GIV VGE 6/113 = 0.05 33/124 = 0.27 65/191 = 0.34 11/24 = 0.46 

*The column TR360 ≤ 0.94 was not included because only 12 observations had TR360 in this range, with no cases  
  of Grade IV (GIV) VGE. 

 
 
Table 2b shows that the incidence of Grade IV VGE is higher among Ambulatory than Adynamic 
subjects, and this direction does not change with sex. Males have a higher percentage of Grade IV VGE 
cases than females have. 
 
 

Table 2b: Cross-Tabulation of NOADYN, SEX, and Grade IV VGE 
 

 NOADYN 
 Adynamic Ambulatory 
  

Female 

No GIV VGE 25/27 = 0.93 61/69 = 0.88 
GIV VGE 2/27 = 0.07 8/69 = 0.12 

  
Male 

No GIV VGE 51/57 = 0.90 288/395 = 0.73 
GIV VGE 6/57 = 0.10 107/395 = 0.27 
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Table 2c shows that the proportion of Grade IV VGE cases increases with AGE group regardless of sex – 
with the exception of the incidence for females over age 40. This exception might also be considered as 
evidence of a slight interaction between SEX and AGE, although the sample size in this category may 
be too small for the interaction to be reliable. 
 
 

Table 2c: Cross-Tabulation of SEX, AGE, and Grade IV VGE 
 

 AGE 
 19+ – 30 30+ –  40 40+ – 60 
  

SEX=0 (Female) 
No GIV VGE 34/35 = 0.97 39/47 = 0.83 13/14 = 0.93 

GIV VGE 1/35 = 0.03 8/47 = 0.17 1/14 = 0.07 
  

SEX=1 (Male) 
No GIV VGE 206/260 = 0.79 89/124 = 0.72 44/68 = 0.65 

GIV VGE 54/260 = 0.21 35/124 = 0.28 24/68 = 0.35 
 
 
Finally, Table 2d tabulates Grade IV incidence by AGE and NOADYN status. As before, we see an 
increasing incidence of Grade IV VGE with AGE and with ambulatory individuals. However, this table 
also shows that the difference in Grade IV incidence across NOADYN status (Adynamic vs. Ambulatory) 
remains roughly constant across AGE. 
 
 

Table 2d: Cross-Tabulation of NOADYN, AGE, and Grade IV VGE 
 

 AGE 
 19+ – 30 30+ –  40 40+ – 60 
  

NOADYN=0 (Adynamic) 
No GIV VGE 33/34= 0.97 27/31 = 0.87 16/19 = 0.84 

GIV VGE 1/34= 0.03 4/31 = 0.13 3/19 = 0.16 
  

NOADYN=1 (Ambulatory) 
No GIV VGE 207/261 = 0.79 101/140 = 0.72 41/63 = 0.65 

GIV VGE 54/261 = 0.21 39/140 = 0.28 22/63 = 0.35 
 
 
Overall, the cross-tabulations show general trends of the importance of TR360, SEX, NOADYN 
status, and AGE on the incidence of Grade IV VGE. Also, there appears to be some evidence of possible 
interactions among variables as the variables are categorized in the tables. 
 
In the following sections, we will explore the influence of the explanatory variables on the time to 
onset of Grade IV VGE. For exploratory purposes, we will next describe a nonparametric estimator of the 
survival curve. 
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3. Turnball Estimates of Survival Curves 
 
A nonparametric method for estimating S( t ), the probability of survival beyond a given time, t, is due 
to Turnball (1976). Turnball’s method generalizes the Kaplan-Meier estimate of survival probabilities to 
interval-censored data and provides a nonparametric maximum likelihood estimate (MLE) of S( t ) 
computed using an Expectation-Maximization algorithm, as we briefly describe next. 
 
Consider each interval endpoint to be a recorded time, say τj, and form new intervals based on the 
ordered recorded times, 0 = τ0 < τ1 < … < τm. Consider the ith individual who experiences an event within 
the interval (Li, Ri]. For every interval of recorded time, (τj-1, τj], that falls within the censored interval (Li, 
Ri], set ijα = 1. Given an initial estimate of S(τj ), j = 1,…, m, the algorithm iterates between estimating pj 

= S(τj-1) −  S(τj ), the probability of the event occurring within the interval, (τj-1, τj], and estimating S(τj ), 
using a Kaplan-Meier estimate involving the pseudo-number of events, jd , occurring at time τj, where 

1

( )
n

j ij j ik kk
i

d p pα α
=

= ∑ ∑ . Convergence of the algorithm to stable estimates ˆ jp  then yields the 

nonparametric MLE of S( t ). 
 
However, the nonparametric MLE found by the algorithm is not necessarily unique (Turnball, 1976). 
Gentleman and Geyer (1994) point out that the maximization is a concave programming problem with 
linear constraints on the sum of the nonnegative pj. A sufficient condition for the uniqueness of the MLE 
computed using this algorithm is the negative definiteness of the Hessian matrix of the log likelihood as a 
function of the pj. The Hessian matrix is negative definite if the n ×  m matrix, A, of the elements ijα  is 
full column rank. We refer you to Gentleman and Geyer (1994) for further details. 
 
The Turnball estimate of  F( t ) = 1 −  S( t ), the probability of experiencing the event by time, t, was 
computed for the Grade IV VGE data togethre with 95% simultaneous confidence bands. The MLE of F 
was determined to be unique if we use the method of Gentleman and Geyer. The confidence bands were 
computed on the logit-transformed F(t), then back-transformed to get an interval on F(t) itself (Meeker 
and Escobar, 1998). The formulas used for the lower and upper confidence limits were programmed in 
S-PLUS 2000 and Mathematica 4.0. Figure 1 shows the resulting estimate with 95% simultaneous 
confidence bands. 
 
The presence of a cured fraction of individuals in a population may be manifested in the data through 
a plateau in an estimate of the survival curve, such as in a Kaplan-Meier or Turnball survival estimate. 
Figure 1 shows evidence of a plateau of approximately 0.25, beginning at about five hours. Thus, if the 
cured fraction in the dataset were actually 0.75, the Turnball estimate as shown in Figure 1 would plateau 
at around 0.25. However, a plateau can also occur if there is insufficient follow-up in the study, resulting 
in many right-censored observations. Maller and Zhou (1996) give further details and references. 
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Figure 1. Turnball estimate of probability of Grade IV VGE by 
time (hours), along with 95% simultaneous confidence bands. 

 
 
We also stratified the data by sex as well as by NOADYN status (LBA = lower body adynamia) before 
we computed the Turnball estimate of the probability of Grade IV bubbles. Figure 2 shows the estimates 
of probability, excluding 95% confidence intervals for clarity. It is important to note that although the 
strata have different sample sizes, the graphical estimates still give some idea of what to expect from 
predictions of a parametric model. Figure 2a shows that males may have a higher probability of Grade IV 
bubbles over females, although the curve for females is based on only 96 out of 548 records. Figure 2b 
shows that individuals with movement in the lower body (i.e., ambulatory) have a higher probability 
of Grade IV bubbles at most times; again, the curve for LBA is based on only 84 records. 
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Figure 2. Turnball estimates of probability of Grade IV VGE, stratified by (a) sex and (b) LBA status. 
No LBA implies that the individual is ambulatory. Sample sizes can be inferred from Table 1. 
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Figures 3a and 3b stratify the data by quintiles of TR360 and the AGE categories used in Table 2d, and 
show the Turnball estimate for each stratum. The lowest category was not included for TR360 because 
there were no instances of Grade IV VGE. Both figures show that onset time decreases with age and 
with TR360. 
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Figure 3a. Turnball estimates of probability of Grade IV VGE, stratified by TR360. 
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Figure 3b. Turnball estimates of probability of Grade IV VGE, stratified by AGE. 
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4. Model Fitting and Selection 
 
4.1 Lognormal Model for Non-cured Population 
 
A common way to deal with interval-censored observations when fitting parametric models is to 
use maximum likelihood estimation, where the likelihood contribution for an observation known to fall 

within the interval 0 1( , ]t t  is 1

0

( ; )
t

t
f u duθ∫ , where f is the density corresponding to the parametric 

distribution function F, which depends on θ . For Grade IV VGE data, the chosen parametric form for 
the survival distribution for the “non-cured” individuals was lognormal because the form of its hazard 
function is consistent with the hypothesized potential for experiencing Grade IV bubbles. That is, the 
lognormal hazard function is zero at time zero, increases to a maximum, then decreases to zero as time 
goes to infinity. The potential for Grade IV VGE for individuals in hypobaric conditions is purported to 
follow this trend. Other parametric forms – such as the Weibull and log-logistic – were also tried, but the 
fit of these parametric forms was worse than for the lognormal. Thus, the log time to onset of Grade IV 
bubbles is assumed to be normally distributed with a mean that is a linear combination of several 
covariates, and a constant scale parameter. The survival function is 
 

( ) log( ) ( )
, , 1

t
S t

µ
β σ σ

− = − Φ  

x
x     (4.1)  

 
where 

Φ  is the cumulative distribution function for the standard normal distribution 

0
1

( )
p

k k
k

xµ β β
=

= + ∑x  

σ is the standard deviation of log(t), and 
 
xk   k = 1,…, p are values of p explanatory variables 

 
An initial model included all the variables listed in Table 1as covariates. For computational purposes, 
the variables AGE and TR360 were standardized. The standardized versions are subsequently denoted 
as S.AGE and S.TR360, respectively, where S.AGE = (AGE − 31.85)/7.17, and S.TR360 = (TR360 − 
1.57)/.263 (Table 1 contains the means and standard deviations used for standardization.) The covariates 
were all included in linear form. Some investigation into nonlinear forms yielded no reason to suspect 
nonlinear effects of the covariates on the response variable. In addition, pairwise scatterplots between 
pairs of covariates did not reveal any noticeable relationships. 
 
4.2 Modeling Multiple Observations Per Subject 
 
Some observations originated from the same individual undergoing different tests. That is, some groups 
of observations represent repeated observations within the same subject, and these observations are 
correlated. Although analyzing the data as though the observations were independent can be misleading 
with respect to the precision of the parameter estimates. There are several ways to deal with dependent 
observations. Statistical methods for handling dependent observations might broadly be categorized in 
one of two ways: (1) either dependency is accounted for in the statistical model, or (2) an adjustment is 
made to the variability estimates obtained from a model that assumes independent observations. We 
chose a relatively simple, but typical, method of the first way for modeling the correlation between 
pairs of observations from the same individual. 
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Random Effects Model for Dependent Observations 
 
A random effects model handles repeated measurements by incorporating random subject effects into 
the linear form representing the conditional mean of the log time to the event. The conditional mean for 
the jth log event time for the ith subject is modeled as 
 

0
1

(log | , ) ( )
p

ij i ij kij k i
k

E t b x bµ β β
=

= = + +∑x x     (4.2) 

 
In this representation, ib  is the random effect for subject i, distributed normally with mean zero and 

constant variance 2
bσ . Note that the observations made on the same subject share the same random effect. 

Also, the ib  are assumed to be independent of one another. Using (4.2), the model representation for log 
tij is 
 

log ( )ij ij ijt µ ε= +x      (4.3) 
 
In (4.3), ijε  represents a mean-zero, normally distributed error term with variance 2σ , and independent of 

ib . The unconditional variance of log ijt  is thus 2 2
bσ σ+ , so the correlation between any pair of log times 

for a given subject is (log ,log )ij ijcorr t t ′ =  2 2 2( )b bσ σ σ ρ+ = , independent of i and j. 
 
A random effects model also allows for heterogeneity in log times across subjects. As such, it can 

capture variability not modeled already in the linear combination, 0
1

p

kij k
k

xβ β
=

+ ∑ . A large value of 2
bσ , 

the variance of random subject effects, relative to 2σ , the variance due to all other factors besides subject 
effects, may indicate relatively high variability among observations made between individuals or could 
indicate a proportionately large amount of unmodeled covariates. 
 
4.3 Estimation of the Parameters from a Random Effects Model 
 
Model (4.3) has p + 3 parameters: (β = (β0,…, βp), σb, σ). In a classical statistics context, the number 
of parameters for this model will always be p + 3 irrespective of the number of subjects tested. Although 
the random effects, bi, may behave like parameters, technically these random effects are just another level 
of random variation in the model. So, we do not estimate them as we would the other p + 3 parameters. 
However, their distribution must be considered in the likelihood function describing the random process 
that is assumed to have generated the data. If we denote the likelihood conditional on 1( ,..., )nb b=b  by 

1( , , , ( ,..., ))b nL b bσ σ =bβ , then MLEs of (β, σb, σ) are obtained by maximizing, with respect to (β, σb, 
σ), the likelihood integrated over the distribution of the random effects, b 
 

( , , ) ( , , ) ( | ) ( , , ) ( | )b b i i b
i

L L N d L b N b dσ σ σ σ σ σ= = ∏∫ ∫b b b bβ β β   (4.4) 

 
where ( | )i bN b σ  is the zero-mean Gaussian probability density function with standard deviation, bσ , 
evaluated at ib . However, the integration in (4.4) is not always tractable. In this case, other options are 
available for getting MLEs. Computational methods for standard errors of the estimates depend on the 
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option chosen. In our case, numerical integration is a viable option because we integrate with respect to 
univariate variables. That is, the right-most side of (4.4) can be written as 
 

( , , ) ( , , ) ( | )b i i b i
i

L L b N b dbσ σ σ σ= ∏∫β β     (4.5) 

 
Equation (4.5) is then maximized with respect to the parameters of interest. Gauss-Hermite quadrature 
can be used to do the integrations (Naylor and Smith, 1982). 
 
Another alternative for obtaining generalized MLEs is via Bayesian estimation with diffuse priors on the 
unknown parameters. With the complicated likelihood functions, Markov Chain Monte Carlo (MCMC) 
sampling makes estimation easier than other methods. In this type of sampling, repeated draws from the 
joint posterior distribution follow a first-order Markov chain. The joint posterior distribution of the 
parameters is proportional to the likelihood function times the joint prior distribution on the parameters. 
Estimates of expectations with respect to the posterior distribution can be obtained as Monte Carlo 
estimates using samples from the chain. For symmetric, unimodal distributions, first-order expectations 
(if they exist) coincide with strict MLEs. So, when histograms of the samples from the chain look 
unimodal and symmetric, the sample average is fairly close to what would be the MLE had we used 
traditional maximum likelihood estimation procedures (for example, Gilks et al., 1996). 
 
An advantage of MCMC sampling with random effects models is that the random effects can be sampled 
from their conditional distribution (given the data and current parameter samples) and implicitly averaged 
over. This avoids direct integration required to get the integrated likelihood. 
 
We combined the two approaches to estimate parameters. First, we set independent diffuse priors on 
the parameters in (β, σb, σ), and then used MCMC sampling to obtain approximate generalized MLEs 
by taking the sample averages from the MCMC output chains. All univariate histograms of the MCMC 
samples of single parameters were roughly symmetrical. We then used approximate generalized MLEs as 
starting values in a quasi-Newton Rapheson algorithm to maximize integrated likelihood. The integration 
was performed using Gauss-Hermite numerical integration. The reason for combining the two methods 
instead of using the MCMC sampling alone was that the MCMC sampling (as described) included the 
specification of a joint prior distribution. Although the joint prior was specified to be diffuse and, thus 
arguably , close to noninformative with respect to the likelihood, we note that this analysis is not strictly 
a Bayesian analysis. A prior distribution has no meaning in our estimation, and is used together with 
MCMC sampling to get starting values only. There are certainly methods for using MCMC sampling 
in frequentist contexts (e.g., Gilks et al., 1996), including the use of a truly noninformative joint prior. 
However, none of these procedures (that we tried) was as practical to implement computationally as the 
above combined approaches. Furthermore, all of the methods we did try “converged” to similar estimates. 
 
More details of the estimation are presented later. We will now describe an extension of the initial 
lognormal model to handle a cured fraction. 
 
 

5. An LFP Model for Time to Onset of Grade IV VGE 
 
An LFP Model is a mixture model for survival data consisting of two groups: (1) individuals who 
will eventually experience the event, and (2) individuals who will never experience the event, sometimes 
called “immune” individuals. The probability that a randomly selected individual will never experience 
the event in question is sometimes referred to in the literature as the “cure rate”. The cure rate may or 
may not depend on explanatory variables. There are numerous references of the application of these 
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models in survival and reliability analysis in the literature (e.g., Maller and Zhou, 1996; Meeker and 
Escobar, 1998). 
 
For our population, the cure rate is the probability of never experiencing Grade IV bubbles. We 
assume that the cure rate depends on explanatory variables measured on each individual. This means 
that for a given individual, the probability of experiencing Grade IV bubbles is a function of physical 
characteristics of the individual measured prior to the test session. For the observed data, the cure rate is 
zero for individuals who underwent tests that had interval-censored recorded times, and it is nonnegative 
otherwise. In the next subsection, we will define the cure rate as a function of explanatory variables, and 
give the resulting lognormal likelihood for interval- and right-censored data. Later, we will compare the 
LFP model to a non-mixture lognormal model, where both models are fitted using random subjects 
effects. 
 
5.1 Construction of the Limited Failure Population Model 
 
For the jth observation from the ith individual, define the indicator variable as 
 

1 if the th subject will eventually experience Grade IV VGE on their th test

0 otherwiseij

i j
z


= 


 

 
Although immunity to the event, Grade IV VGE, may be perceived as applying to individuals, 
the indicator variable is defined for each observation within each individual. An individual will not 
necessarily have a constant propensity for cure across repeated observations, as some covariate values 
may change across measurements. 
 
We make an assumption in this paper that the ijz s are independent for all i and j, conditional on certain 
modeled covariates as discussed in the next subsection. This assumption is valid provided that all relevant 
covariates have been included in the model. Thus, we assume that dependence between any two ijz s 
occurs only through shared covariate values. 
 
If we assume that censoring times are independent of event times, and that observations from 
different individuals are independent of one another, we can construct the likelihood as follows: 
For an interval-censored observation with covariates, xij, the contribution to the likelihood is 

0 1( , 1| )
ij ijij ij ijP t T t z< ≤ = x  = 0 1( 1| )( ( | ) ( | ))

ij ijij ij ij ijP z S t S t= −x x x , for known left and right interval 

endpoints 0ij
t  and 1ij

t . Similarly, for a Type I right-censored observation, the contribution to the 

likelihood is 0 0( , 1 | ) ( , 0 | )
ij ijij ij ij ij ij ijP t T z P t T z< = + < = =x x  0( 1| ) ( | )

ijij ij ijP z S t= x x  + ( 0| )ij ijP z = x . 

As noted for model (1.1), the survival distribution S is only defined for the non-cured population. The 
survival distribution is always 1 for the cured population. 
 
If ( | )cG t x  represents the survival function for the randomly right-censored time, ct , then 
a randomly right-censored observation’s contribution to the likelihood is 

0 0( , 1 | ) ( , 0 | )
ij ijij ij ij ij ij ijP t T z P t T z< = + < = =x x 0( 1| ) ( | )

ijij ij ijP z G t= x x + ( 0| )ij ijP z = x . If the 

random censoring distribution G  does not involve parameters of interest related to the covariates, then 
( | ) ( )c cG t G t=x . In this case, the contribution to the likelihood from a randomly censored observation 

becomes 0( 1| ) ( )
ijij ijP z G t= x + ( 0| )ij ijP z = x . If the randomly right-censored observations can be treated 

as Type I censored observations, these observations contribute the same term to the likelihood as given 
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for the Type I censored cases. This situation is desirable because it eliminates the need to specify the form 
for G , with or without dependence on covariates. 
 
Of the 425 right-censored observations, 11 cases were randomly right-censored. Because there were so 
few randomly censored observations, we did not feel it was statistically beneficial to include an additional 
term in the likelihood for only these 11 cases. Moreover, our exclusion of the randomly right-censored 
cases from parameter estimation procedures made little changes to the resulting estimates. So, we treat 
the 11 randomly right-censored cases as though they were Type I right-censored. 
 
The contribution by right-censored observations reflects the mixture aspect of the model. A right-
censored observation would have a probability ( 1| )ij ijP z = x  of ever experiencing the event, and a 

probability ( 0| )ij ijP z = x  of being immune to the event. The probability ( 0| )ij ijP z = x  is the cure rate 
mentioned above. 
 
Define the censoring indicator ijδ  to be 1 if the ijth observation is interval-censored and zero otherwise. 

Denote the observed data by 0 1{ , , , ; 1,..., ; 1,..., }
ij ijij ij iD t t j m i nδ= = =x , and denote a single data record by 

Dij. The likelihood is then 
 

1 1

( , , | ) ( , , | , ) ( |0, )
imn

b ij b ij i i b i
i j

L D L D b N b dbσ σ σ σ σ
= =

= ∏ ∏∫β β    (5.1) 

 
where 
 

1

0 1 0

( , , | , )

( 1 | )( ( | , ) ( | , )) ( 1| ) ( | , ) ( 0 | )
ij ij

ij ij ij

ij b ij i

ij ij ij i ij i ij ij ij i ij ij

L D b

P z S t b S t b P z S t b P z
δ δ

σ σ
−

=

   = − = + =   x x x x x x

β
 

and, 0 1
1

log
( | ( ,..., ), )

p
k kk

p

t x b
S t x x b

β β

σ
Φ =

 − − − = =
 
 

∑
x . 

 
We modeled the probability of an individual eventually experiencing Grade IV bubbles on a given test as 
a logistic function of the explanatory variables, 
 

0 0
1 1

( 1| ) exp( ) 1 exp( )
p p

ij ij k ijk k ijk
k k

P z x xα α α α
= =

 
= = + + +   

∑ ∑x    (5.2) 

 
where the kα  are parameters relating the covariates to the cure rate. 
 
With these forms for the cure rate and survival distribution, ( , , | , )ij b ij iL D bσ σβ  in equation (5.1) 
becomes 
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∑
∑

(5.3) 
 
We refer to the parameters, 0 1( , ,...., )pβ β β=β  as location parameters and to the parameters 

0 1( , ,..., )pα α α=α , in the cure rate, as mixture parameters. If the location parameters in (5.3) are all 
distinct from the mixture parameters, the maximum number of distinct parameters in (5.3) is 2(p + 1) + 1. 
In many modeling situations, some of the mixture or location parameters are fixed at zero. 
 
5.2 Estimation of the Parameters from the Random Effects Models 
 
We now fit two LFP random effects model to the Grade IV VGE data and contrast their fit with that of a 
non-mixture model, which is actually a special case of the LFP model, but with ( 1) 1ijP z = = for all i and 
j. The models were fit using the structures given above, with the addition of a random effect added to the 
conditional mean log time to onset for each individual. Estimation was done in two steps. First, we used 
MCMC sampling to sample realizations of ( , , , , )bσ σ bβ α  from their joint posterior distribution. The 
WinBUGS software version 1.3 (Spiegelhalter et al., 2000) was used for the computations. Independent 
normal priors with mean 0 and variance 1,000 were chosen for the elements in ( , ,log ,log )bσ σβ α . 
Results did not appear to be sensitive to the parametric form of the diffuse prior specification. For 
example, using gamma distributions for the standard deviations instead of normal distributions for the log 
standard deviations did not change the results. Three chains of 2,000 samples each were run per model, 
each starting from different initial values. One set of initial values for the MCMC procedure came from 
direct maximization using Newton-Raphson’s algorithm, where observations were treated as independent. 
(That is, random effects were ignored.) Basic convergence diagnostics, such as trace plots, and Brooks-
Gelman-Rubin Statistics (Brooks and Gelman, 1998) showed no evidence of lack of convergence of 
the Markov chains to a target distribution. Univariate histograms of samples from the chains were all 
roughly symmetrical, even for the standard deviation parameters. 
 
Sample means from the combined three chains of output were used as starting values for a quasi-Newton-
Rapheson maximization of the integrated likelihood in (5.1). The integration was performed using Gauss-
Hermite quadrature, and was programmed in Mathematica 4.0. Thirty quadrature points were deemed 
more than sufficient for the integration. Table 3 gives the approximate MLEs of the coefficients for three 
models. The first is a non-mixture model, and the others are LFP mixture models. Approximate standard 
errors in parentheses were obtained using the inverse of a finite difference approximation to the negative 
of the Hessian of the log likelihood evaluated at the point estimates (Tanner, 1996, p. 74). No evidence 
of the nonidentifiability of parameters was observed for any of the models in Table 3. Asymptotic 
correlation matrices for Table 3 are in Appendix A. 
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Table 3. Approximate Maximum Likelihood Estimates for Fitted Models 
 

 Non-Mixture  
Model 

Full LFP 
Mixture Model 

Reduced LFP 
Mixture Model  

    
−LogLH 552.237 549.683 550.635 
AIC 559.237 558.683 557.635 
    

Location Parameter 
Estimates 

   

β0  4.622 (0.491) 3.586 (0.502) 3.376 (0.403) 
β1 (SEX) −0.885 (0.347) −0.491 (0.364)  
β2 (S.AGE) −0.242 (0.122) 0.047 (0.146)  
β3 (S.TR360) −0.892 (0.149) −0.840 (0.143) −0.864 (0.144) 
β4 (NOADYN) −1.354 (0.350) −1.271 (0.336) −1.359 (0.332) 
σ (scale) 1.299 (0.120) 1.064 (0.143) 1.121 (0.132) 
    

Mixture Parameter 
Estimates 

   

α1 (SEX)  1.448 (0.839) 1.906 (0.917) 
α2 (S.AGE)  1.306 (0.593) 1.416 (0.717) 
    
Random Effects Parameter 

Estimates 
   

σb (sd of random effects) 1.081 (0.161) 1.017 (0.150) 1.032 (0.150) 
ρ  'corr(log ,log )ij ijt t  0.409 (0.151) 0.477 (0.159) 0.459 (0.157) 

 
 
Certain physical characteristics may make a person immune to experiencing Grade IV VGE. The 
variables SEX and S.AGE are suitable for modeling the probability of immunity. The explanatory 
variables S.TR360 and NOADYN are likely only to influence the onset time of Grade IV VGE. Thus, 
although we only consider SEX and S.AGE for the mixture portion of any LFP models, we consider all 
four variables for inclusion in the location portion of an LFP model. Despite slight evidence in Tables 2a-
d of possible interactions among covariates, we did not consider interactions among covariates in this 
report. 
 
The first LFP model represented in Table 3 (called the full LFP mixture model) describes log survival 
time as depending on all four of the explanatory variables. It also models the cure rate as depending on 
two explanatory variables: SEX and S.AGE. The second LFP model (the reduced LFP mixture model) 
describes log survival time as depending on two of the explanatory variables: S.TR360 and NOADYN. 
It further models the cure rate as depending on two explanatory variables: SEX and S.AGE. Other 
configurations were tried, but none was uniformly better in terms of fit and accuracy of predictions. 
Judging from the values of Aikaike’s Information Criterion (AIC) in Table 3, the reduced LFP model 
appears to be a better fit than either the non-mixture or the full model. In addition, two of the location 
parameter estimates in the full model (SEX and S.AGE) are much less than twice their standard errors, 
indicating that these two variables are insignificant location parameters in the model. 
 
Before we discuss additional assessments of model fit and predictive accuracy, we will present a brief 
interpretation of the meaning of the parameter estimates within each model. 



 

 17

Interpretation of the parameter estimates 
 
Negative location parameter estimates for a given explanatory variable imply that for two observations 
differing by one unit in the variable, the expected log time to onset of Grade IV bubbles decreases by the 
estimate given. According to the non-mixture model, for a male versus a female, the expected onset time 
is 0.885 log minutes sooner. Similarly, for two individuals who differ by one standard deviation in AGE 
(approximately 7 years), the expected time to onset is 0.242 log minutes sooner for the older individual. 
The remaining parameter estimates are interpreted similarly. For the reduced LFP model in Table 3, the 
location parameter estimates share the same direction as those for the non-mixture model. In addition, for 
a male versus a female, the expected log odds of the probability of eventually experiencing Grade IV 
VGE is 1.906 higher. For two individuals who differ by one standard deviation in AGE, the expected log 
odds are increased by 1.416 for the older individual. Both of these imply that younger females are most 
likely to be immune to Grade IV VGE, and older males are least likely to be immune to Grade IV VGE, 
at least within the age range we modeled. 
 
Two sources of variability are estimated for each model given in Table 3. The parameter bσ  describes 
variability between individuals, and the parameter σ  describes variability from a measurement error 
not associated with between-individual variability. A relatively high estimate for bσ  as compared to its 
standard error may imply strong heterogeneity among individuals. An acceptable rule of thumb to apply 
in this case is that if the estimate of bσ  is greater than twice its standard error, there is evidence of 
significant heterogeneity among individuals. Table 3 shows that the estimates for bσ  are much greater 
than twice their respective standard errors. Heterogeneity may result from idiosyncratic differences 
among individuals or from differences associated with one or more covariates that were not modeled. 
The relatively high estimate for bσ  results in moderate estimates of correlation between two log 
responses on the same subject. 
 
Also, the estimates of bσ  for both models are comparable to those of σ . One reason for this may be 
due to the small number of tests contributed by most subjects. In fact, 42% of the 238 subjects contributed 
only one record, 30% contributed two records, and less than 5% contributed more than six records. Thus, 
much of the variability in log event times is due to variability among individuals. 
 
Next we will discuss goodness of fit and predictive accuracy of the two models represented in Table 3. 
 
 

6. Goodness of Fit of Two Models for Onset Time of Grade IV VGE 
 
Goodness of fit of parametric models with interval censoring is not easy to check, particularly when the 
recorded intervals are not fixed across subjects. Therefore, standard test procedures that use the prediction 
of the percentages of events within certain time intervals are not useful. In addition, if the covariates are 
continuous, we may not be able to assess goodness of fit well by dividing the data into groups according 
to the values on the covariates, and then comparing the nonparametric  survival estimates to the predicted 
survival curves. Also, with a high percentage of right-censored observations, it is difficult to get enough 
interval-censored data within some of the groups. 
 
In addition, residual plots are complicated due to the difficulty in, first, defining a residual for interval-
censored data, and, second, determining its sampling distribution under the hypothesis that a model is 
correct. So, instead we describe a graphical goodness-of-fit approach that is useful in evaluating the 
model fits. 
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6.1 Goodness of Fit Using a Graphical Method 
 
The graphical approach we used involved a parametric bootstrap procedure. We bootstrapped interval- 
and right-censored observations from each of the fitted models with point estimates in Table 3 and fixed 
covariate patterns. Then, we calculated the Turnball estimate of the probability of Grade IV bubbles for 
each bootstrapped sample and compared these Turnball curves to the data-based Turnball estimate and 
95% simultaneous confidence bands (as we discussed in Section 3). The confidence bands describe the 
uncertainty that is associated with the data-based Turnball estimate as an estimate of the actual or “true” 
population-based curve. The population here might be individuals in simulated hypobaric conditions. So, 
to the extent that the confidence interval endpoints contain curves from the parametric bootstrap from a 
particular model, that model may be said to describe the population well. Alternatively, if there is the 
possibility (under 95% confidence) that the “true” population Turnball curve is located in areas where 
there are no generated curves from a particular model, there is an unacceptably high chance that the data 
did not originate from the same model. This reasoning assumes that the generated Turnball curves fill the 
entire range of possible curves generated from the model in question. 
 
To reflect the dependency in the data, the parametric bootstrap procedure generated a random effect for 
each individual from a normal distribution with mean zero and variance equal to the point estimate of 2

bσ . 
Repeated tests from a single subject all had the same random effect. 
 
One hundred bootstrapped samples were drawn from each of the competing random effects models. 
Details of the bootstrapping procedure are in Appendix B. After around 50 samples were analyzed, the 
concentration of the resulting plotted Turnball estimates hardly changed. So, 100 samples were deemed 
sufficient for graphical purposes. Figure 4 contains the resulting Turnball estimates of “failure” or 
occurrence probabilities by time for the non-mixture model and the LFP models described in Table 3. 
Each panel in the figure shows the 100 generated estimates for one of the models (the grayed lines), 
superimposed with the original data-based curve based on the original data (the dark solid line) and 
the simultaneous confidence bands (dotted dark lines). 
 
According to Figure 4, both LFP mixture models can generate Turnball nonparametric maximum 
likelihood estimates that fall within the 95% confidence bands associated with the estimate computed 
from the original data. If the actual population Turnball curve falls within the dark dotted line (with 95% 
confidence), that curve is consistent with either LFP model. The patterns for the two LFP models are very 
similar, except the full model displays more variability – probably due to its two additional coefficients. 
Also, the distributions of Turnball points at each hour for the reduced LFP model appear to be negatively 
skewed. Thus, fewer generated datasets had many observations with infinite event times for the reduced 
LFP model than for the full LFP model. 
 
The plot containing the samples drawn from the non-mixture model shows that almost all the generated 
curves are close to the data-based curve and also fall within the 95% simultaneous confidence bands on 
the data-based Turnball curve. However, within the 95% confidence bands are areas that are outside of 
the range of generated curves. This may be indicative of a poor model fit because the actual curve may 
correspond to areas outside of the range of generated curves. Adding a mixture part to the model (as was 
done in the full and reduced LFP models) ensures that this situation will not happen and that the actual 
population curve (with 95% confidence) is within the range displayed by the generated curves from the 
model. As we mentioned in a previous section, this conclusion assumes that the bootstrap has generated 
curves to cover the entire range that the model in question would predict. The assumption seems to hold 
true, at least approximately, even though there are only 100 generated curves because the difference in 
the range between 50 and 100 generated curves was minimal. 
 



 

 19

 

0 1 2 3 4 5 6
Hours

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

P
ro

po
rti

on
 F

ai
lin

g

- - - - --------
- --- --

------ ---- --------- -------
---

- - - - - - - - -
- - - -

- - - -

------
-- - --- -

------- ---
- ----

----- ----
------- - - - - - - - - - - - -

0 1 2 3 4 5 6
Hours

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

P
ro

po
rti

on
 F

ai
lin

g

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

- - - - --------
------

------ ---------
---------

-----
- - - - - - - - -

- - - -

- - - -

------
-- -----

------- ---
-----

---------
------ - - - - - - - - - - - - -

0 1 2 3 4 5 6
Hours

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

P
ro

po
rti

on
 F

ai
lin

g

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

- - - - --------
- -----

----- - -----------
-------

-----
- - - - - - - - -

- - - -

- - - -

------
-- - ----

------ - ---
-----

---------
------ - - - - - - - - - - - - -

Full LFP Model

Non-mixture Model

Reduced LFP Model

 
Figure 4. Goodness-of-fit graphs for three models: one non-mixture lognormal model and 
two LFP mixture lognormal models. The dark solid line represents the Turnball nonparametric 
probability estimate based on the observed data. The dark dotted lines are 95% simultaneous 
confidence bands. The 100 grayed lines represent the Turnball estimates based on 100 samples 
from the respective fitted model. 

 
 
A generated dataset with many immune observations has a nearly flat Turnball curve. The presence 
of S.AGE in the mixture portion of the LFP models may cause some generated datasets to contain many 
immune observations. The mixture coefficient on S.AGE is positive for both models, which implies that 
with increasing age, the probability of experiencing Grade IV VGE eventually increases as well. The 
majority of the S.AGE values were negative (slightly less than 60%), however, so age was below the 
mean age of 31.85 years. A negative S.AGE decreases the estimated probability of eventually 
experiencing Grade IV VGE. Generated datasets of onset times that have many negative 
S.AGE values may have nearly flat Turnball estimates. 
 
Based on the plots in Figure 4, it seems that our data more likely originated from a model similar to an 
LFP mixture model than from the non-mixture model. Furthermore, as given in the next section, general 
predictive accuracy based on the non-mixture model is not as good as prediction based on the LFP 
mixture model. 
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7. Predictive Accuracy of Models  
 
To compare the predictive accuracy of the models, we used K-fold cross-validation. Briefly, cross-
validation consists of leaving out K subsets of observations in turn, fitting the model to the remaining 
set of observations, then using the model to predict the values of the left-out subset. This process may 
be repeated M times to get M different groupings of K subsets. Cross-validation corrects for much of the 
positive bias that results from predicting observations when those observations are used to fit the model. 
We used an additional bias adjustment that corrects another “optimistic” bias; the procedure is called K-
fold Adjusted Cross-validation. For details of the adjustment, see Davison and Hinkley (1997). We 
detail the procedure for our application in Appendix C. 
 
Predictions, conditional on the covariate values and censoring pattern, were obtained on log times 
to Grade IV bubbles. Error in prediction was assessed via a squared distance from the nearest interval 
endpoint if the predicted value fell outside of the recorded interval, and the error was zero otherwise. 
Predictions do not consider repeated observations made on the same individual. For computation of 
the predicted log time, see Appendix C. 
 
The top half of Table 4 contains results for two values of K (K = 10, 548), the number of subsets that 

partitioned the dataset. The choice K = 10 is recommended by the rule of thumb, K = min(10, n ), 
where n is the size of the data set (Davison and Hinkley, 1997). The choice K = 548 entails leaving out 
each observation in turn. The table shows the results of the mean prediction error averaged over subsets 
and over 100 repetitions (for K=10 only). The size of each subset is labeled as m. The two values for K 
give similar results and, thus, lead to the same conclusion: namely that the LFP model predicts better than 
the non-mixture model on a new dataset from the same population. Other choices of K led to very similar 
results as those seen in the table. 
 
 

Table 4: Measure of Predictive Accuracy of Models 
(K-fold Cross-Validated Prediction Error) 

 
 Non-mixture 

Model 
Full LFP 

Mixture Model  
Reduced LFP 

Mixture Model 
Number of Groups (Size 
of Left-out group) 

   

K = 10 (m = 55) 0.961 0.532 0.596 
K = 548 (m = 1) 0.961 0.532 0.594 
    
Sample size used to fit 
model: 

   

n = 25 1.005 0.751 0.636 
n = 35 0.991 0.698 0.636 
n = 50 0.920 0.636 0.593 

 
 
The bottom half of Table 4 contains results to get an idea of the sample size for which overfitting 
begins to display itself. We randomly selected a small number of observations (n = 25, 35, or 50) from the 
dataset and fit each model using that set. A sample size of 50 might be considered sufficient, whereas a 
sample size of 25 may not be sufficient. Then we computed the averaged prediction error using the left-
out cases. We repeated this procedure 100 times for each model and took the median of the resulting 
prediction errors. (The median was used instead of the mean because of some very large prediction 
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errors). The median is displayed in the table. As we expected, prediction generally gets better for all 
models as the sample size increases. But notably, the non-mixture model predicts poorly compared to the 
two LFP models for all sample sizes. In addition, the reduced LFP model appears to perform slightly 
better than the full LFP model. 
 
We note that although the parameter estimates can be expected to change slightly when all of the 
data points are not used to fit the model, it is hoped that the parameter estimates do not change grossly 
for each fitting, or else there is a problem with highly influential points. That did not appear to be the case 
here, as regards the first two rows of Table 4, where a substantial part of the data was used in the fitting. 
However, that is not the case when using only 25 or 35 observations. Here, the parameter estimates 
sometimes changed wildly due to different percentages of right-censoring. So, the last three rows of Table 
4 really assess the stability of the structure of the model, not necessarily of the parameter estimates. Even 
with 25 observations, overfitting does not appear to be a big problem for any of the models, but predictive 
accuracy is again much worse for the non-mixture model versus the two mixture models. 
 
The two mixture models are very close in predictive accuracy. Either model could be used for prediction, 
giving similar results. However, the reduced model has a slightly better predictive accuracy in the case of 
the small sample size. It also has fewer parameters and, thus, a smaller AIC value. All of the coefficient 
estimates of the reduced model exceed or come close to exceeding twice their standard errors. It is clear 
that coefficients for SEX and S.AGE do not belong in the location portion of the full model because of 
their magnitude relative to their standard errors. We will therefore use the reduced LFP for specific 
predictions in the next section. 
 
 

8. Further Evaluation of the LFP Model 
 
Based on estimates from the reduced LFP Model in Table 3, the estimated probability of remaining free 
from Grade IV bubbles by a given time, t, is 
 

ˆˆ ˆ ˆ( ) ( 1) ( ) ( 0)(1)P T t P z S t P z> = = + =  = ˆlog ( )ˆ ˆ( 1| ) 1 ( 0| )
1.121
tP z P zµ − = − Φ + =  

  

xx x  (8.1) 

where 
 
ˆ ( ) 3.376 0.864 . 360 1.359STR NOADYNµ = − −x , 

 
exp(1.906 1.416 . )ˆ( 1| )

1 exp(1.906 1.416 . )
SEX S AGE

P z
SEX S AGE

+= =
+ +

x , 

 
. ( 31.85)/7.17S AGE AGE= − ,   and  . 360 ( 360 1.57)/0.263STR TR= − . 

 
 
The complement of (8.1), the probability of experiencing Grade IV bubbles by a given time, t, is 
 

ˆˆ ˆ( ) ( 1)(1 ( ))P T t P z S t≤ = = − = ˆlog ( )ˆ( 1| )
1.121
t

P z
µ− = Φ  

x
x .   (8.2) 

 
For calculating predictions, the random effect term, ib , that appears in (4.2) is not used. Equation (8.2) is 
called the cumulative distribution function (CDF). Plots of (8.2) are shown in Figure 5 for several values 
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of the explanatory variables, along with 95% point-wise confidence intervals that were obtained assuming 
asymptotic normality of the logit of the respective estimated probabilities and then back-transforming the 
resulting interval to get a confidence interval on the probability itself. The confidence intervals are not 
symmetric, but they are always contained within 0 and 1 (Meeker and Escobar, 1998). The upper points 
of the intervals are represented by dashed lines, and the lower points are represented by dotted lines. For 
all four plots, the higher dashed lines and the higher dotted lines correspond to the higher solid lines, 
representing the point estimates. 
 
Figures 5a and 5b compare probabilities by time at altitude for males and females ages 27 and 40, 
respectively (to contrast younger and older ages), with a tissue ratio of 1.5, and who are lower body 
adynamic. The ages 27 and 40 years were chosen to represent “younger” and “older” because of the 
numbers of males and females at those ages in the dataset. There were nine females and 39 males at age 
27, and five females and six males at age 40. (The number of females at any age was less than 10.) 
 
According to the predictions, males have higher probabilities of Grade IV bubbles than do females 
at almost all hours at altitude, but the difference is very slight for an age of 40. The slight difference 
between the male and female curves at an age of 40 (as compared to the larger difference at an age of 27) 
is caused by the mixture probability being dominated by the exponential of S.AGE times its coefficient, 
when S.AGE increases to a large positive value. The standardization of 40 years is about 1.14, whereas 
the standardization of 27 years is negative (−0.68). The same reason also explains the larger standard 
errors when S.AGE is positive: that is, the expression for the standard error (at a given time) contains 
the exponential of S.AGE times its coefficient. Also, there are more observations at age 27 (n = 48) 
than there are at age 40 (n = 11). 
 
Figures 5c and 5d compare predicted probabilities by age for different tissue ratios and adynamic 
versus ambulatory individuals, respectively. For both graphs, only males are considered, staying a total 
of six hours at altitude (i.e., time = 6 hours). For Figure 5c, the individual is considered to be lower body 
adynamic. For Figure 5d, the individual has a tissue ratio of 1.5. For both plots, the probability estimates 
increase with age, then flatten out as age increases beyond its mean in the dataset (about 32 years). Also, 
at any age, the higher tissue ratios have higher estimated probabilities as do ambulatory individuals, with 
tissue ratio held constant. The negative acceleration pattern that is seen in Figure 5d actually occurs for 
ambulatory and adynamic individuals. The range of the vertical scale hides the pattern for the adynamic 
curve. The same general pattern in the predictions occurred for other hours besides six hours. 
 
Together, the panels in Figure 5 seem to predict interactions between age and the other variables in their 
influence on probability of Grade IV VGE at a given time point. For example, the predicted difference in 
probability of Grade IV VGE between an adynamic and ambulatory individua l at time = 6 hours depends 
on the age of the individual. It is greater at a higher age. Figure 5 may signal the need for an interaction 
term in the model, although we do not explore this idea further here. 
 
A comparison of Figure 5 with Figure 6, which has the analogous predictions from the non-mixture 
model, shows mean predictions that are generally in the same direction, albeit somewhat larger overall. 
There are several differences, however. First, when age is fixed at 40 years, the difference in the CDF for 
males versus females for the non-mixture model widens at almost all time points, as compared to when 
age is fixed at 27 years. This is in contrast to Figure 5, where the analogous graphs for the reduced LFP 
model show a narrowing of the CDF when age is fixed at 40 years, as compared to when age is fixed at 
27 years. The narrowing in Figure 5 is due to not having S.AGE or SEX in the location portion of the 
model. Predictions from the full LFP model (not shown) show a slight widening as well, but not as much 
as for the non-mixture model. The full model had S.AGE and SEX in both mixture and location portions. 
When AGE begins to increase, both LFP models have mixture portions that are dominated by the S.AGE 
term, and the mixture portion goes toward 1.0 for both sexes as S.AGE increases. For the reduced LFP 
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model, however, the location portion stays fixed when S.AGE changes, so the CDFs for males and 
females grow closer together. For the full LFP model, the location part changes when S.AGE and SEX 
change, and the change compensates for the mixture portions going toward 1.0, causing the CDFs to 
remain substantially apart. The full LFP model showed similar predictions to Figures 5c and 5d. 
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Figure 5. Estimated probabilities of Grade IV VGE, with 95% point-wise confidence intervals, as 
predicted by the reduced LFP Model. Dashed lines are upper points of the intervals; dotted lines are the 
lower points. The solid lines are point estimates. 
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Figure 6. Estimate d probabilities of Grade IV VGE, with 95% point-wise confidence intervals, as 
predicted by the non-mixture model. Dashed lines are upper points of the intervals; dotted lines are 
the lower points. The solid lines are means. 

 
 
Differences in mean predictions across tissue ratio and adynamia status become increasingly larger 
over age for the non-mixture model. Thus, for the non-mixture model we also see evidence of predicted 
interaction between age and other explanatory variables. However, in the dataset, the CDFs do not level 
off after age increases past the mean. 
 
Thus, in comparison with a non-mixture model, the LFP model predicts on average, somewhat smaller 
probabilities of Grade IV VGE – as judged by comparing the vertical axes across the two figures. The 
differences in predictions across tissue ratios and adynamia status appear to increase over age, and then 
stabilize as age increases beyond the mean of about 32 years; for the non-mixture model, the differences 
continue to increase. The empirical proportions of Grade IV incidence by age categories and adynamia 
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status, as given previously in Table 2d, did not indicate an increasing gap in Grade IV incidence across 
adynamia status as age increased. Empirical proportions (not shown) of Grade IV incidence by age and 
TR360 categories also did not indicate increasing differences when comparing tissue ratios across age. 
However, whether the proportions in Table 2d are consistent with the stabilizing differences seen in 
Figures 5c and 5d is hard to infer. 
 
Figures 5a and 5b versus Figures 6a and 6b make different predictions regarding the probability of 
Grade IV VGE over time for males and females at different ages (27 and 40 years). Although the figures 
show only two ages, generally as age increases, the reduced LFP model predicts that males and females 
have increasingly the same CDF; the non-mixture model, on the other hand, predicts that the CDFs for 
males and females remain different as age increases. The reduced LFP model predicts that when a tissue 
ratio is around 1.5, after a certain age – perhaps 40 years – lower body adynamic males and females are 
equally susceptible to Grade IV VGE. A comparison of the predicted CDFs to the empirical proportions 
given in Table 2c appears to corroborate the predictions of the non-mixture model in that the difference in 
Grade IV incidence for males versus females is higher for the 40 – +60 age category than for the 19 – +30 
age category. However, the number of females beyond age 40 is relatively small. Also, the difference is 
lower for the 30 – +40 category, which would seem to support the reduced LFP model. 
 
 

9. Discussion 
 
We have fit two different types of models to the Grade IV VGE data: (1) a limited failure population 
lognormal mixture model and (2) a traditional lognormal non-mixture model. The reduced LFP mixture 
model appears to be a slightly better fit, as evidenced by its AIC value in Table 3 and the discussion of the 
goodness-of-fit graphs in Figure 4. Also, the LFP mixture model gives more accurate predictions overall, 
as seen in Table 4. However, a comparison of specific predictions in Figures 5 and 6 to cross-tabulations 
in Table 2 (a-d) do not appear to overwhelmingly favor either the non-mixture or the LFP mixture model. 
 
An alternative to the reduced LFP model is to use the full LFP model. This model had good predictive 
accuracy and a good fit to the data. Moreover, the full model did not predict a narrowing difference in 
probabilities of Grade IV VGE by time across ages 27 and 40 for males and females. However, according 
to the asymptotic standard errors that we computed, the two extra parameters the model contained over 
the reduced model were clearly not significantly different from zero. 
 
In Figure 7, we show boxplots of the predicted probabilities of eventually experiencing Grade IV VGE 
during an exposure for each of the two LFP models. The probabilities were computed for the covariate 
combinations in the dataset and the estimates in Table 3 and in equation (5.2). The boxes contain the 
middle 50% of the probabilities, and the horizontal lines with dots in the center represent the medians. 
Within the whiskers are 95% of the data. The two boxplots are somewhat similar; indeed, they show 
predictions almost anywhere between 0.20 and 1.0. However, the distribution of probabilities from the 
reduced model contains the bulk of its values at a higher probability. So, the reduced model may be 
more suitable for a population expected to contain few individuals immune to Grade IV VGE, where 
immunity is determined largely based on age and sex. 
 
As a predictive model, the reduced LFP model of Table 3 is the best of the models presently investigated 
to predict the onset of Grade IV VGE in the population of volunteer subjects undergoing altitude chamber 
tests. A third LFP was investigated that contained the same parameters as those of the reduced LFP, but it 
also contained S.AGE in the location portion. The fitting of this third LFP model was almost identical to 
that of the reduced LFP model. 
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Figure 7. Boxplots of predicted probabilities of eventually experiencing Grade IV VGE 
for two LFP models. 

 
 

10. Limitations and Extensions  
 
We have shown that a limited failure population model might suitably describe the onset of Grade IV 
VGE in volunteer subjects undergoing testing in altitude chambers. The reduced LFP mixture model that 
is shown in Table 3 seems an appropriate candidate for prediction of onset time. This model is appropriate 
in a situation where age affects the predisposition for Grade IV VGE, but does not influence its rate of 
occurrence in a situation where Grade IV VGE will occur eventually. The general predictive ability of 
a non-mixture for future observations similar to the current set of observations does not appear to be 
as good as that of the LFP model we fit. 
 
It is possible that other physical characteristics beside age and sex influence immunity to Grade IV 
VGE. One of these variables is body weight or body mass. Body mass was measured for individuals in 
the current dataset, but a decision was made early by the original researchers not to include this variable 
in their analysis because it had low predictive ability. Its inclusion in an LFP model may help predictive 
ability, however. It also may be necessary to look more closely at interactions among certain covariates, 
such as TR360 and NOADYN, as well as AGE and SEX. 
 
More flexible models might be considered. For example, the generalized-F distribution, which contains 
the log normal distribution as a special case, can be used (Peng et al., 1996). To apply this distribution to 
interval-censored data may be practically quite complicated. A Bayesian approach might make the model 
fitting easier. A Cox model with frailties is another alternative model. At least one study (Chhikara et al., 
2000) has shown the superiority of the Cox model applied to onset of DCS, as opposed to parametric 
models such as the log normal or log-logistic. Whether this superiority remains when there is also interval 
censoring and dependent observations will be addressed in the future. We should note that a completely 
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non-parametric model may not be possible we have only a few observed occurrences of Grade IV VGE in 
the right tail of the survival distribution. 
 
Finally, the dataset we analyzed in this study contained many right-censored observations. Although 
the likelihood accounts for right-censoring, we did not specifically address the effect, if any, that heavy 
censoring may have in our goodness-of-fit procedures. Since heavy right-censoring is common in data 
obtained from altitude chamber tests (Koti et al., 1998; Chhikara et al., 2000; Conkin et al., 1998), this 
is a potential concern and limitation in our analysis. 
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Appendix A: Asymptotic Correlation Matrices for Fitted Models 
 
 
 

Non-Mixture Model 
 

 β0  β1 (SEX) β2 (S.AGE) β3 (S.TR360) β4 (NOADYN) log σ  log σb 

β0  1.000       
β1 (SEX) -0.613 1.000      
β2 (S.AGE) -0.207 0.150 1.000     
β3 (S.TR360) -0.271 -0.001 0.022 1.000    
β4 (NOADYN) -0.671 -0.047 0.111 0.159 1.000   
log σ  0.350 -0.098 -0.069 -0.273 -0.130 1.000  
log σb 0.350 -0.159 -0.112 -0.080 -0.179 -0.075 1.000 

 
 
 

Reduced LFP Mixture Model  
 

 β0  α1 (SEX) α2 (S.AGE) β3 (S.TR360) β4 (NOADYN) log σ  log σb 

β0  1.000       
α1 (SEX) 0.463 1.000      
α2 (S.AGE) 0.295 0.810 1.000     
β3 (S.TR360) -0.317 -0.077 -0.015 1.000    
β4 (NOADYN) -0.824 -0.123 -0.126 0.140 1.000   
log σ  0.490 0.472 0.242 -0.268 -0.155 1.000  
log σb 0.310 0.149 0.102 -0.074 -0.163 -0.046 1.000 

 
 
 

Full LFP Mixture Model 
 

 β0 β1 
(SEX) 

α1 
(SEX) 

β2 
(S.AGE) 

α2 
(S.AGE) 

β3 
(S.TR360) 

β4 
(NOADYN) 

log σ  log σb 

β0  1.000         
β1 (SEX) -0.426 1.000        
α1 (SEX) 0.418 0.272 1.000       
β2 (S.AGE) -0.365 0.016 -0.335 1.000      
α2 (S.AGE) 0.194 0.162 0.727 0.085 1.000     
β3 
(S.TR360) -0.258 -0.075 -0.149 0.077 -0.037 1.000    
β4 
(NOADYN) -0.653 -0.151 -0.257 0.140 -0.175 0.155 1.000   
log σ  0.458 0.164 0.607 -0.309 0.290 -0.300 -0.249 1.000  
log σb 0.361 -0.036 0.252 -0.169 0.107 -0.094 -0.191 0.056 1.000 
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Appendix B: Details of the Parametric Bootstrapping procedure  

 

Let 1 4ˆ ˆ{ ,..., }α α  and 0 1 4
ˆ ˆ ˆ{ , ,..., }β β β  denote point estimates of the mixture and location parameters, 

respectively, for the models studied. Note that some of these estimates will be zero. In particular, for the 
non-mixture model all of 1 4ˆ ˆ{ ,..., }α α  will be zero. Also, let σ̂  and ˆbσ  be point estimates of the scale 
parameter and standard deviation of random effects (on the log scale), respectively. 
 
For i = 1 to 238 subjects, and for j = 1 to ni tests, each with prescheduled time at altitude, ALTTIMEij and 
recorded interval, ( 0ij

t 1ij
t ]: 

 
(1) Draw a random effect, ib , from a normal distribution with mean 0 and standard deviation, ˆbσ . 
 
(2) Divide the time axis from 0 to ALTTIMEij hours into alternating four-minute monitoring 

intervals and 12-minute non-monitoring, or “resting,” intervals. This scheme reflects the intervals 
of assessment designed in the study. (Naturally, not all time axes between 0 and ALTTIMEij divided 
evenly into four- and 12-minute intervals. In cases where the time axis does not divide evently, we 
truncated the ending interval to fit the time frame.) 

 
(3) Using the values on the explanatory variables, xij, with probability in (5.2), generate a random 

variate, Tij, from a lognormal distribution with location parameter, 0 1
ˆ ˆp

k ijkk
xµ β β

=
= + ∑ , and scale 

parameter, ˆσ σ= . Otherwise, let Tij = ∞ . 
 

That is, use (5.2) to compute the estimated probability that the observation will eventually 
experience Grade IV VGE. (For the non-mixture model, the probability is one.) With this probability, 
the generated random variate comes from the indicated lognormal distribution. Otherwise, it is 
infinite. Note that the set of covariates xij used for location and mixture portions may differ. 

 
(4) Simulate Type I right-censoring: If Tij < ALTTIMEij, determine which interval Tij falls in by 

comparing Tij with the divided time axis in (2). Record an interval for Tij, using the following scheme: 
(a) If Tij falls within a 12-minute “resting” interval, record the 12-minute interval; (b) if Tij falls within 
a four-minute monitoring interval (not including the first four-minute interval), record the endpoints 
of the 12-minute resting interval that comes immediately prior to the four-minute interval; (c) if Tij 
falls within the first four-minute interval, record the interval from time zero to Tij; and finally, (d) if 
Tij > ALTTIMEij, or if Tij  falls within the final 12-minute interval (if there is a final 12-minute 
interval), call the observation Type I right-censored at ALTTIMEij. 

 
The interval scheme described in (2) above did not appear to greatly influence goodness-of-fit plots. 
In fact, we tried many different schemes, including intervals of one fixed width, and the results were 
virtually identical. 
 
Note that we did not simulate random censoring, because none of our models accounted for the sparse 
existence of random censoring in the data. These cases were instead treated as Type I censored. 
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Appendix C: K-fold Adjusted Cross-Validation Procedure for GIV VGE models 
 
We assessed the aggregate prediction error of each model using a K-fold cross-validation algorithm. 
In general, K-fold cross-validation repeatedly splits the data into K disjoint sets of nearly equal size (say, 
C1,…, Ck). These K sets define K different splits into training and test sets, with each set C in turn acting 
as a test set and the remaining sets together acting as a training set. Prediction error is then calculated 
once for each observation, and the average prediction error is obtained. This average is called the K-
fold cross-validation estimate of prediction error (e.g., Davison and Hinkley, 1997). A practical 
rule of thumb is to take K = min(n1/2, 10). 
 
A further adjustment corrects for a bias on the order of 1/(K−1) in the K-fold cross-validation estimate of 
prediction error. This adjustment adds a term that represents the resubstitution error minus the sum of the 
averaged prediction errors resulting from using the model fit to each of the K subsets, in the proportion 
each subset comprises in the data. The following steps may clarify the algorithm (see Davison and 
Hinkley, 1997, p. 294-295 for full details). 
 
 

Algorithm for K-fold Adjusted Cross-validation 
 

(1) Fit the model to all cases { 1,..., 548n= =l }. Obtain predicted log times for the l th case using 

 

· ( )1
0

1

ˆ ˆ ˆwith probability ( 1 | , )ˆ( , ) log

otherwise

k

k k
j

x P z
F t

δβ β α
µ

−

=


+ == = 

 ∞

∑ x
x

l

l l l
l l

 

 
where δl  is defined in (5.1). 

 
(2) Compute the averaged squared error using these predicted values, 
 

{ }1
0 1

1

ˆ ˆ ˆ( , ) log , log , ( , )
n

D F F n c t t Fµ−

=

= ∑ x
l l l

l

 
where 

 

{ } { }( )
0 1

20 1
0 1

ˆ0 if log ( , ) log  
ˆlog , log , ( , )

ˆ ˆmin log ( , ) , log ( , ) otherwise

t F t
c t t F

t F t F

µ
µ

µ µ

 ≤ ≤
= 

− −


x
x

x x
 

 
 
(3) Divide the cases into K disjoint groups of sizes (approximate equal) m1, …, mK 

 
For each k = 1,…, K, 

 
(4) Fit the model to all data except cases in the k th group. 
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(5) Calculate predictions for all observations using this model, and calculate 
 

{ }1
0 1

1

ˆ ˆ ˆ( , ) log , log , ( , )
n

k kD F F n c t t Fµ−
− −

=

= ∑ x
l l l

l

 

 
(6) Calculate the K-fold cross-validation estimate of prediction error: 
 

{ }1
, 0 1

1 1

ˆ ˆlog , log , ( , )
k

i i

mK

CV K ik ik k
k i

n c t t Fµ−
−

= =

∆ = ∑ ∑ x  

 
(7) The adjusted estimate is 
 

, ,
1

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , )
K

k
ACV K CV K k

k

m
D F F D F F

n −
=

∆ = ∆ + − ∑  

 
(8) Repeat steps (3) through (7) M times, and average the prediction errors. 
 
Note that in this algorithm, the predicted values are the log times to onset (which may be infinite), and 
that the error in prediction is defined by the distance of the predicted value from the nearest endpoint of 
the recorded interval, if the predicted value falls outside of the interval, and zero otherwise. 
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