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ABSTRACT 
 
Astronauts are at risk for developing decompression sickness (DCS) while exposed to the hypobaric 
environment of the extravehicular suit in space, in terrestrial hypobaric chambers, and during ascent from 
neutral buoyancy training dives.  There is increasing recognition that DCS risk is different between diving 
and altitude exposures, with many individual parameters and environmental factors implicated as risk 
factors for development of DCS in divers but are not recognized as risk factors in altitude exposures.  
Much of the literature to date has focused on patent foramen ovale (PFO), which has long been 
considered a major risk factor for DCS in diving exposures, but its link to serious DCS in altitude 
exposures remains unclear.  Knowledge of those risk factors specific to hypobaric DCS may help identify 
susceptible individuals and aid in astronaut selection, crew assignment, and mission planning.  This paper 
reviews the current literature pertaining to these risk factors, including PFO, anthropometric parameters, 
gender, menstrual cycle, lifetime diving experience, physical fitness, biochemical levels, complement 
activation, cigarette smoking, fluid balance, and ambient temperature.  Further research to evaluate 
pertinent risk factors for DCS in altitude exposures is recommended. 
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Introduction 
 
Absolute or relative reductions in ambient pressure, as experienced during extravehicular activity, 
physiological training in hypobaric chambers, or ascent from diving, can all place unique stressors on the 
human body.  Participants in these environments are at risk for the development of decompression 
sickness (DCS), whose symptoms range from mild musculoskeletal pain to serious neurological deficits 
and even to death.  Given the potential negative impact on crew health and mission success, it would be 
invaluable to identify risk factors for DCS and employ preventive strategies to mitigate the risk. 
 
DCS occurs as a result of transitioning from one environment to a more hypobaric environment.  When 
the ambient pressure decreases, nitrogen dissolved in the bloodstream comes out of solution and forms 
bubbles, which may remain locally or may be transported into the venous system.  Most bubbles are 
trapped in the pulmonary capillary bed before being quickly resorbed, but if the pulmonary filter gets 
overwhelmed or bypassed due to an anatomic defect allowing for right-to-left shunt, these bubbles may 
become arterial gas emboli and result in local ischemia anywhere in the body.  
 
While Type I DCS (“pain only” or mild lymphatic involvement) generally requires no treatment or brief 
treatment with 100% oxygen, Type II DCS can manifest with pulmonary, cardiovascular, or neurologic 
symptoms that are more difficult to treat and may result in significant morbidity or mortality.1   The 
Human Research Program’s Exploration Medical Capability Element has been tasked with reviewing 
what is known about individual susceptibility to hypobaric environments—specifically, DCS.  This white 
paper will summarize the work done by two sub-groups in 1999, the Patent Foramen Ovale Committee 
and Medical Operations EVA Integrated Product Team. The paper will also review the literature on PFO 
since 1999, and discuss other risk factors for DCS that have been proposed.  
 

Patent Foramen Ovale & Decompression Sickness 
 
Patent foramen ovale (PFO), the primary means of arterial gas embolism through the heart, has been 
implicated in an individual’s susceptibility to DCS.  PFO is a common remnant of fetal circulation when 
the atrial septum primum and septum secundum fail to fuse during the first months of life, enabling 
abnormal blood flow between the left and right atria.  Some PFOs open only when there is an increase in 
pulmonary pressure—e.g., during a Valsalva maneuver or strenuous activity—but some PFOs are 
persistently open and believed to be more dangerous since they pose a constant threat for arterializations 
of gas bubbles.2  An autopsy study reported that the overall incidence of PFO in 965 subjects was 27.3% 
with a median diameter of 5 mm; 9.7% of the subjects had a PFO greater than 5 mm.3  The incidence of 
resting PFO was reported to be 5 to 10% in the literature and might be as high as 21% in the experience of 
the JSC Cardiovascular Laboratory.4   
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Concern about the role of PFO in the development of decompression sickness arose from diving data.  
Studies have shown that divers with a PFO have a 2.5 to 4.5 fold increase in the risk of developing type II 
DCS.5-6   To date, PFO has been the most studied risk factor of DCS, although its role in altitude 
exposures remains controversial for a number of reasons, including the lack of a standardized technique 
for detecting PFOs and uncertainty about the exact incidence of DCS. 
 

PFO Committee/Medical Operations EVA IPT 
 
In 1999, a NASA-sponsored committee was tasked with reviewing data on PFO and making 
recommendations about the merit of PFO screening in the astronauts and test subjects.  The Medical 
Operations EVA Integrated Product Team (Med Ops EVA IPT) subsequently reviewed the committee’s 
recommendations and consulted outside experts to develop a consensus position on PFO screening. 
 
Despite the strength of evidence in diving exposures, PFO had not been directly linked to Type II DCS in 
altitude exposures.  A retrospective study by the Navy found no association between PFO and Type II 
DCS in 45 aviators who presented with Type II DCS symptoms related to altitude physiological training.7    
 
In an Air Force altitude chamber-based study in which 1,500 volunteer subjects were monitored for gas 
emboli simultaneously in the right and left sides of the heart at simulated altitude, six subjects were found 
to have right-to-left gas crossover; five of these subjects were symptomatic with joint pain or skin 
mottling (but no cerebral symptoms) at the time of arterial gas embolism.  Of the six cases, one was found 
to have a PFO, one had a small sinus venosus defect, three had no septal defect, and one was not available 
for evaluation.8  In another presentation, Pilmanis reported 39 cases of Type II DCS in over 2,000 
research exposures which simulated EVA exposures of 4-hour durations or longer. None of these subjects 
had detectable gas phase crossover during Trans Thoracic Echocardiography (TTE) monitoring of all four 
cardiac chambers. 
 
While no published study showed a statistically significant association between PFO and Type II DCS in 
altitude exposures, case reports did suggest a relationship.  Past hypobaric chamber research at JSC 
identified five cases of Type II DCS.  Three of these cases were tested: two (66%) were found to have a 
PFO.  Of note, four of the five cases did not prebreathe oxygen.  A serious case of Type II DCS was 
reported at Duke University during testing of a prebreathe reduction program, despite two hours of 
oxygen prebreathe and albeit a less conservative nitrogen elimination protocol than the ISS operational 
protocol.  This subject was later determined to have a resting PFO. 
 
Based on the available data, the PFO Committee recommended screening all individuals for high-risk 
PFO, such as resting PFO, PFO in excess of 5 mm in diameter, or individuals with more than 20 
countable bubbles observed passing through the PFO during a measurement.  It was noted, however, that 
some PFOs that opened only with provocation during strenuous EVA, might have a greater diameter than 
a smaller resting PFO.  Furthermore, TTE with bubble contrast, the screening technique recommended by 
the PFO Committee, had a sensitivity of 60 to 70%, and identifying “high risk PFOs” was technically 
challenging and somewhat subjective.  Transesophageal echocardiography was considered the gold 
standard but invasive and not without risk. 
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The Med Ops EVA IPT noted that PFO screening could potentially eliminate 10 to 25% of EVA-
proficient crewmembers from the existing cadre of astronauts, which would severely limit the operational 
flexibility of assigning crewmembers to station missions.  Furthermore, given the limitations of PFO 
screening as well as the unclear relationship between PFO and Type II DCS in altitude exposures, PFO 
screening would not eliminate the risk of Type II DCS on orbit.  A more effective means of mitigating the 
risk of Type II DCS would be to minimize the chance of bubble formation by oxygen prebreathe 
procedures.   
 
Taking the PFO Committee’s recommendations and external experts’ review into account, the Med Ops 
EVA IPT recommended the following: 
 

1. That NASA continue to eliminate astronaut candidates with flow-significant atrial septal defects 
detected with TTE 

2. That an in-suit Doppler be implemented as soon as possible, and that an on-orbit operational 
validation of the 2-hour prebreathe protocol be conducted 

3. That a multi-center retrospective study be initiated to determine the association between PFO and 
Type II DCS in well-controlled altitude exposures, as a function of decompression stress 

4. That other prospective PFO studies be considered for funding 
5. That the possibility of screening out astronauts for high risk PFO continue to be considered as 

warranted by new data or diagnostic modalities 
6. That sensitive screening methods for the risk of Type II DCS be developed, beyond screening for 

PFO, i.e., screening for a combination of PFO and the propensity to produce high-grade venous 
gas embolism, which would occur in a very small percentage of astronauts 

 

Beyond the Med Ops EVA IPT Report 
 
Since 1999, other retrospective studies and meta-analyses have supported the relationship between PFO 
and Type II DCS in divers.  In a retrospective cohort study of 52 sport divers, Schwerzmann et al.9 found 
a 4.5-fold increased risk for DCS in divers with PFO than those without a PFO.  On MRI, almost twice as 
many ischemic brain lesions were seen in divers with PFO, but the difference was not statistically 
significant.  The authors did not analyze the relationship between these brain lesions and DCS.  Gempp et 
al.10  studied 49 divers with spinal cord DCS and found that divers with DCS were 3.6 times more likely 
than healthy divers to have a large right-to-left shunt on transcranial Doppler ultrasonography. While 
shunting was not associated with an increased incidence of cervical spinal cord DCS, divers with a right-
to-left shunt were 6.9 times more likely to have thoracolumbar DCS.  These studies confirm the increased 
prevalence of PFO or right-to-left shunting in divers who experience DCS and begin to offer a 
neuropathological basis for symptoms seen in Type II DCS. 
 
New data also suggest that PFOs evolve as divers age.  Anecdotally, some divers suddenly become 
susceptible to DCS after an uneventful diving career of many years.  A longitudinal study spanning 6 to 8 
years found that the permeability of the foramen ovale in 40 divers changed.  A small number (7.5%) of 
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the divers who initially had a PFO actually saw closure of the PFO during this study. Another 22.5% of 
the study cohort developed increased permeability, half of whom had no initial PFO.11   
 
In altitude exposures, it remains unclear whether PFO is a risk factor for Type II DCS.  An evidence-
based literature review concluded that PFO could occur in altitude-induced DCS, but there was no 
information beyond two case series to indicate causality.12  Under-reporting of symptoms in altitude 
conditions due to perceived negative career impact might partly explain the paucity of data.  
 
It has been suggested that diving and altitude exposures are fundamentally different entities, as evidenced 
by the observation that the most common symptoms of DCS at altitude are pain only, as opposed to 
neurologic symptoms seen in recreational divers13; moreover, DCS symptoms tend to occur during 
altitude exposure versus after diving exposure.14  Differences in duration of exposure, prebreathe 
protocols, and oxygen use during exposure, as in the case of EVA, may further account for the difference 
in diving and altitude data.  Review of the literature since 1999 reveals that additional research is needed 
to ascertain the relationship between PFO and Type II DCS in altitude exposures.  Thus, the benefit of 
screening astronauts for PFO remains unclear. 

Other Factors Affecting Individual Susceptibility to DCS 
 
While patent foramen ovale has been studied the most, other risk factors for DCS have been proposed 
based on known mechanisms, including bubble crossover through the heart, bubble crossover through the 
lungs, and autochthonous bubbles.  PFO and right-to-left shunting represent only the first mechanism.  
Little is known about conditions that allow crossover through the lungs, which appear to have a threshold 
for filtration of venous bubbles by the pulmonary vasculature, at least in dogs.15  A variety of individual 
parameters and environmental factors have been studied in an effort to identify risk factors for 
autochthonous bubble formation that lead to susceptibility to DCS.  
 

Individual Parameters 
 
Parameters such as age, height, weight, body mass index, percent body fat, aerobic capacity, and gender 
have been reported to influence DCS incidence.16-19  In the most comprehensive study of these parameters 
to date, Air Force researchers sought to quantify individual susceptibility to DCS and determine if the 
aforementioned variables could be used to predict DCS risk.  Retrospectively reviewing 2,980 altitude 
exposures in the Air Force Laboratory Altitude DCS Research Database,20 a study found that the 
combination of lower VO2max and greater weight appeared to be the best predictor of DCS, but this 
accounted for less than 13% of the variation in DCS susceptibility.  The authors concluded that individual 
susceptibility to DCS could not be predicted by these anthropometric and physiologic variables. 
 
In another study, Webb et al.17  prospectively compared male and female subjects in 961 exposures to 
simulated altitude and found no statistically significant difference in DCS incidence between men 
(49.5%) and women (45.3%).  Among women, they found no difference in DCS during the first two 
weeks of the menstrual cycle between users of hormonal contraception vs. non-users.  However, if only 
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the last half of the menstrual cycle were considered, hormonal contraception appeared to double the risk 
of DCS, a finding supporting an earlier report by Doyle et al.21  but refuted by Lee et al.22    
 
Lee and her colleagues surveyed 240 female sports divers treated with hyperbaric therapy for DCS in 23 
treatment centers worldwide, and found the incidence of all DCS symptoms to be greatest in the first half 
of the menstrual cycle (29 to 34%), with a marked fall in the third week (13 to 23%) before rising again in 
the fourth week (21 to 25%); the trend was similar for Type I and Type II symptoms.  The effect of 
contraceptive use appeared to shift the occurrence of DCS to later in the cycle but there was no significant 
difference between contraceptive users and non-users. There was, however, a statistically significant 
difference between the two groups when age was taken into account.  The observed differences in these 
studies might have been due to differences in how menstrual history was recorded as well as doses and 
formulation of contraceptives.  More study is needed to draw a conclusion about the role of menstruation 
and contraceptive use in the risk of DCS in women, and whether EVA schedules would need to be 
adjusted accordingly. 
 
An individual’s lifetime diving experience has also been linked to DCS risk.  In a survey-based study of 
429 subjects, Klingmann et al.23 found a 2.51-fold higher lifetime incidence of DCI in divers with a 
history of deep dives greater than 40 meters compared to divers whose lifetime maximal depth was 40 
meters or less.  The relative risk of DCS between divers with 200 or fewer dives and “highly 
experienced” divers with more than 400 dives was 3.90.  Similarly, certification to lower depths was 
associated with 1.97 to 8.17 times higher incidence of DCS.  There was no statistically significant 
difference between technical divers and non-technical divers.  Attrition, rather than any physiologic 
factors, was identified as the explanation for the association between low-depth diving experience and 
risk of DCS, but the authors did acknowledge a selection bias in their methodology and called for further 
study before their results could be generalized to all divers.  Similarly, prior DCS might predispose an 
individual to subsequent development of DCS, but data have been limited to observations of caisson 
workers in the 1970s.24  
 
On the other hand, a more recent study suggested that repeated scuba dives and regular physical exercise 
activity might protect against DCS, possibly due to reduced bubble formation.25  However, exercise itself 
has been observed to offer protection from DCS.  In addition to laboratory studies that showed sedentary 
rats and pigs were more susceptible to severe DCS and death than exercise conditioned groups,26-27 
several human studies have found decreased venous gas emboli formation, thereby inferring decreased 
DCS risk, in divers who exercised 24 hours before diving,28 2 hours before diving,29 during 
decompression,30 and during a decompression stop.31 In altitude exposures, exercise during prebreathe 
also appeared to be beneficial in preventing DCS. 19,32   
 
Biochemically, limited studies have suggested that subjects susceptible to the formation of venous gas 
emboli during decompression had significant higher levels of total cholesterol, high-density lipoprotein 
cholesterol, potassium, phosphate, calcium, and magnesium.33  A follow-on study was unable to replicate 
these findings, and it was noted that factors such as prebreathe time, use of an intermediate pressure stage, 
and length of time in the chamber could affect various biochemical parameters.34 
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The observation that many of the effects of complement activation were similar to the symptoms of DCS 
led to several studies that ultimately disproved complement activation as a risk factor for DCS.  Ward et 
al.35 found that the presence of air bubbles in plasma activated the complement system by the alternate 
pathway and that subjects who were more sensitive to this complement activation were more susceptible 
to DCS.  However, in vivo testing failed to demonstrate this phenomenon, and subjects who developed 
DCS showed no difference in complement activation during dives compared to healthy subjects.36  
 
Finally, a history of cigarette smoking may predispose an individual to DCS.  A retrospective analysis of 
the Divers Alert Network (DAN) database found that heavy smokers (>15 pack-year history) were 1.88 
times more likely to have DCS than divers who had never smoked and 1.56 times more likely than light 
smokers (0-15 pack-year history).37 

Environmental Factors 
 
Fluid balance appears to play a role in DCS.  One study randomized swine subjects into two groups: a 
hydrated group that was allowed ad lib access to water during a simulated saturation dive, and a 
dehydrated group that was given intravenous furosemide without access to water.  The dehydrated group 
showed a significantly increased rate and faster onset of DCS and death, possibly due to increased bubble 
formation or altered nitrogen removal.38    
 
Ambient temperature has also been considered as a risk factor for DCS.  A Navy study sought to compare 
the incidence of DCS in divers who were immersed in air decompression dives to 120 feet of seawater at 
either 97°F or 80°F, and found that warm conditions during bottom time and cold conditions during 
decompression increased the risk of DCS, but this finding was confounded by dehydration.39  Other 
studies found that hot water suits were 1.81 to 1.96 times more likely than passive thermal protection to 
be associated with DCS, although some of these findings might have been attributable to the dive profile 
or bottom time.40  It has been proposed that increased susceptibility to DCS may result from increased gas 
uptake in warm conditions and decreased elimination in cold conditions, but there is insufficient data to 
confirm this theory.41  

Conclusion 
 
The ability to predict an individual’s susceptibility to decompression sickness in hypobaric environments 
would be advantageous for astronaut selection, crew assignment, and mission planning.  To date, much 
focus has been on PFO as a risk factor for DCS, but a number of other individual parameters as well as 
environmental factors have also been implicated in increased risk of DCS.  Although diving exposures 
were once considered analogous to altitude exposures, there is increasing appreciation for the 
fundamental differences between diving and altitude.  There continues to be a need for altitude research 
under controlled conditions to evaluate potential risk factors for DCS in altitude exposures and apply 
knowledge about individual susceptibilities to mission planning.  In the meantime, it seems sensible to 
continue current protective measures such as exercise-enhanced prebreathe periods to minimize the risk 
of DCS in hypobaric environments. 
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