Asteroid, Lunar, and Planetary Regolith Management
A Layered Engineering Defense

Compiled by: Sandra Wagner
Space Environments Domain System Engineer
NASA Johnson Space Center

Reviewed by: The Lunar Regolith Community of Practice

National Aeronautics and Space Administration
Johnson Space Center
Houston, TX 77058

August 2014
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA’s STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Report Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services also include creating custom thesauri, building customized databases, and organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at 443-757-5803
- Phone the NASA STI Help Desk at 443-757-5802
- Write to: NASA Center for AeroSpace Information 7115 Standard Drive Hanover, MD 21076-1320
Asteroid, Lunar, and Planetary Regolith Management
A Layered Engineering Defense

Compiled by: Sandra Wagner
 Space Environments Domain System Engineer
 NASA Johnson Space Center

Reviewed by: The Lunar Regolith Community of Practice
The Lunar Regolith Community of Practice

Carlos Calle
Physicist
NASA, Kennedy Space Center

Joe Chambliss
Environmental Control and Life Support
NASA, Johnson Space Center

John Cornwell
Thermal Engineer
NASA, Johnson Space Center

Mike Dube
Technical Fellow, Mechanisms
NASA, Goddard Space Flight Center

Jennifer Edmunson, Ph.D.
Geologist
BAE Systems
NASA, Marshall Space Flight Center

Grant Heiken
Lunar Geologist
Editor and Author

Paul E. Hintze, Ph. D.
Research Scientist
NASA, Kennedy Space Center

Ed Hodgson
Technical Fellow
Hamilton Sundstrand

Rajiv Kohli
Safety and Mission Assurance
The Aerospace Corporation

Joe Kosmo
Senior Space Suit Engineer
NASA, Johnson Space Center

Chuck Lockhart
Director
Particle Measuring Systems

Wendell Mendell, Ph.D.
Chief, Office for Lunar & Planetary Exploration
Constellation Systems Program Office
NASA Johnson Space Center / KA

Dan Milholland
Cleanroom Contamination Control
Milholland & Associates

Masami Nakagawa
Professor of Physics
Colorado School of Mines

Sarah Noble
Astrochemistry
NASA, Goddard Space Flight Center

Ed Rains
Environmental Control and Life Support
Jacobs Technology

Gary “ROD” Rodriguez
Systems Architect
sysRAND Corporation

Harrison H. Schmitt
Geologist
Apollo 17 Astronaut

Gary Spexarth
Exploration Missions and Systems Office
NASA, Johnson Space Center

Dr. Lawrence A. Taylor,
Distinguished Professor
Director, Planetary Geosciences Institute
Department of Earth & Planetary Sciences
University of Tennessee

Kris Zacny, PhD
Vice President
Director, Technology Exploration Group
Honeybee Robotics Spacecraft Mechanisms Corporation
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CSF</td>
<td>Combustion Synthesis Fabric</td>
</tr>
<tr>
<td>EDS</td>
<td>Electrodynamic Dust Shield</td>
</tr>
<tr>
<td>EVA</td>
<td>extravehicular activity</td>
</tr>
<tr>
<td>ISRU</td>
<td>in situ resource utilization</td>
</tr>
<tr>
<td>LunRCop</td>
<td>Lunar Regolith Community of Practice</td>
</tr>
<tr>
<td>SEI</td>
<td>Space Exploration Initiative</td>
</tr>
<tr>
<td>SEV</td>
<td>Space Exploration Vehicle</td>
</tr>
<tr>
<td>SPARCLED</td>
<td>Space Plasma Alleviation of Regolith Concentrations in Lunar Environments by Discharge</td>
</tr>
</tbody>
</table>
Table of Contents

The Lunar Regolith Community of Practice

Acronyms

Abstract

1.0 Executive Summary

2.0 Regolith

3.0 Layered Engineering Defense
 3.1 Background
 3.2 Strategy
 3.3 Contamination prevention
 3.4 Exterior cleaning and protection
 3.5 Interior cleaning and protection
 3.6 Air quality

4.0 Technology Needs Recommendations

5.0 References

6.0 Appendix A
"A common sense, layered, engineering design defense can solve any apparent problem with dust during long-term human activity and habitation in the lunar environment."

Harrison H. Schmitt
Ames Research Center
Lunar Dust Symposium
February 2, 2004

Abstract

During missions on asteroid and lunar and planetary surfaces, space systems and crew health may be degraded by exposure to dust and dirt. Furthermore, for missions outside the Earth-Moon system, planetary protection must be considered in efforts to minimize forward and backward contamination. This paper presents an end-to-end approach to ensure system reliability, crew health, and planetary protection in regolith environments. It also recommends technology investments that would be required to implement this layered engineering defense.
1.0 Executive Summary

Space System Engineers design their individual components and systems for reliability, as they should. And, for cross-cutting challenges such as regolith contamination, an integrated systems strategy needs to be considered. This same philosophy applies to the NASA Office of the Chief Technologist Space Technology Area Roadmaps. Discrete technologies are scattered throughout the roadmaps. An integrated, cross-cutting strategy – a layered engineering defense – is needed.

The fundamental basis of the design relies on selecting materials that do not accumulate dust and dirt, innovative material fabrication and processing, engineering design that incorporates design for cleaning, robustness and reliability, and effective operational procedures.

The layered engineering defense presented in this paper incorporates contamination prevention, exterior cleaning and protection, interior cleaning and protection, and air quality maintenance. This strategy was developed through a series of studies, workshops, focus groups, technical interchange meetings, and NASA Lunar Regolith Community of Practice (LunRCoP) Webinars. The community surveyed particulate management best practices and technologies across NASA centers, industry, academia, and other government agencies. The approach also includes lessons learned from Apollo surface missions. It depends mostly on sound operations and engineering design though some technology investments will be required.

Contamination prevention includes stabilizing the surface, reducing dust contamination during extravehicular activities (EVAs), incorporating suitlocks into element designs, eliminating contamination from suits and equipment in habitable volumes, and incorporating pass-through glove boxes to ensure habitable volumes are not contaminated. Systems design should incorporate best practices to include material selection and design for cleanability. Best practices should also be applied to operations. For example, contamination prevention procedures and automated cleaning operations will reduce the amount of crew time required for managing regolith-particulate contamination.

Exterior (outside the habitat or spacecraft) cleaning combines passive and active cleaning technologies to reduce degradation of key elements, such as solar panels and radiators. Exterior protection includes employing dust covers and dust repellent and/or dust-tolerant mechanisms. Note that for the purposes of this paper, cleaning refers to cleaning of accessible surfaces.

Interior (inside the habitat or spacecraft) cleaning includes active systems such as air showers, magnetic filters, and vacuum cleaners. Interior protection incorporates protective personnel equipment and dust covers for connectors. Maintaining air quality involves establishing contamination zones within the habitable volume using air flow to reduce the number of particles that enter clean areas.

Example technologies that are being developed and proposed are included. The recommended technologies required to implement this strategy are presented in the form of capability needs (see Appendix A). Trade studies should be performed to identify the most effective technical solutions, and then those technologies should be developed. Among the criteria for selection, mass and power requirements should be key considerations. Consumable requirements are important components in this analysis.
2.0 Regolith

Regolith is defined as the layer of loose material covering the bedrock of the Earth and Moon, etc., comprising soil, sand, rock fragments, volcanic ash, glacial drift, etc. Because the Moon does not have an atmosphere and running water, erosion forces that weather the Earth do not exist. Asteroids and meteors strike the lunar surface, creating craters and large rocks. High-energy particles and micro-meteors continuously bombard the Moon, further breaking these rocks into very fine dust.

When lunar samples were brought to Earth during the Apollo missions, scientists in the receiving laboratory sorted and catalogued rocks greater than 1 centimeter. The sub-centimeter portion was further broken down into “coarse fines” (1 cm – 1 mm) and “fine-fines” (sub-millimeter). Although the definition was sub-centimeter, in practice, it is the sub-millimeter fine-fines that are called soil. The portion of the soil less than 50 micrometers was informally called dust.

Recently, some have redefined dust. These new definitions set the upper limit of dust as the portion of the regolith less than 10 or 20 microns. For the purposes of this paper, dust is defined in the traditional sense as less than 50 microns and includes lunar, Martian, and asteroid regolith.

Adhesive, cohesive, and excitatory forces become very strong as particle size decreases. This is important from an engineering perspective because the smaller particles will tightly adhere to surfaces they contact and tend to stick together.
3.0 Layered Engineering Defense

3.1 Background

We learned during the Apollo surface missions\(^1\) that when NASA crews and assets interacted with the lunar surface, everything got dirty. Working crew members, rovers, and landing modules raised dust and dirt from the surface that was deposited on assets (Figures 1 and 2).

![Figure 1. Astronaut Harrison Schmitt, Apollo 17. Human activity transports regolith.](image1)

![Figure 2. Astronaut Gene Cernan, Apollo 17. Regolith contamination in lunar module cabin.](image2)

NASA initiated the concept of a “layered engineering defense” dust mitigation approach as part of the 1990’s Space Exploration Initiative (SEI) based on the lessons learned from Apollo. Figure 3 depicts that concept.
3.2 Strategy

The first two layers of defense are materials and engineering design. Materials, when possible, should consist of smooth, dust- and abrasion-resistant surfaces. Pockets, folds, and other points on space suits that could trap dust should be minimized and designed so they do not collect dust. Specialized surfaces that reject dust, either because of inherent surface properties or through active means, should be considered in the original design where appropriate.

Engineering design should incorporate dust covers for sensitive equipment and employ grates on floors to collect dust. Best practices for cleanable design should be followed, and should include minimizing gaps where dust and dirt can collect, designing rounded corners, and including human factors experts throughout the design process to assess crew access.

Operational design is another key component for particulate management. Suit and contaminated equipment ingress to habitable volumes should be eliminated where practical.

Where feasible, automated operations such as continuously active or automated cleaning systems will reduce the amount of crew time required for managing regolith particulate contamination.
3.3 Contamination prevention

For architectures that include bases or pre-positioned assets, surface stabilization in high traffic areas and near the habitat entry points would reduce contamination by creating a surface that would minimize dust transport. Properly prepared roads, Macadam (coarse gravel), as well as establishing keep-out zones, minimize regolith transport and deposition. Berms and landing pads are needed to protect surface assets from contamination and damage due to high-velocity particle impacts.²

![Figure 4. Lunar base concepts include berms, landing pads, and roads.](image)

Because of the unique nature of lunar soil, containing nanophase metallic iron, microwave sintering/melting has been proposed for stabilizing the surface. Rocket landing pads, complete with sintered berms, as well as roads could be prepared with equipment such as a lunar road paver, as shown in Figure 5.³ In fact, the University of Tennessee has suggested a “lunar lawnmower” concept to sinter the lunar surface over smaller areas, such as a lunar crater, shaped parabolically, for use as an dish-antenna.

![Figure 5. Cartoon-sketch of a “lunar road paver.”](image)

Larry Taylor, University of Tennessee.
Other suggested methods for stabilizing the surface include excavation, e.g., grading and compaction, and using palliatives. Caterpillar and Honeybee have extensive experience designing and manufacturing equipment for moving earth. The Department of Defense has used palliatives in the desert to form landing pads for helicopters.

Representatives from organizations experienced in these types of processes presented their experiences to LunRCoP to help NASA understand the technologies and to brainstorm methods where those technologies might apply to human spaceflight.

Another proposed surface treatment is the deployment of Combustion Synthesis Fabric (CSF), which has the potential to be an early in situ resource utilization (ISRU)-derived product. CSF is a fusion of three principal technologies, each of which is commercial off-the-shelf: loose-weave fiberglass fabric, Chemical Vapor Deposition, and Combustion Synthesis. CSF is intended to stabilize or enclose large masses of unconsolidated regolith.

Particles on the undisturbed lunar surface are lightly bound together to form a "duricrust" that is a few mm to 5 mm thick. Another possible concept for surface stabilization is using the binding process for the "duricrust." In the Apollo Lunar Surface Stereo Close-up photos (Figure 6), this crust is visible along the edges of boot prints, where it is cracked and in some cases shoved aside as thin sheets. When dissecting the Apollo drive tube cores (the larger ones), scientists observed tabular "clods" mixed into the regolith that are the same scale (thickness) as the plates of disturbed duricrust. The clods were sampled separately from the surrounding matrix and put into stainless steel vials for future analysis. What binds these particles is unknown, though it may be related to impact-generated vapor and/or surface charging conditions. If the binding process for the duricrust was understood, that information might be used to design a surface stabilization process.

![Figure 6. Understanding the process that forms the duricrust may lead to surface stabilization technologies. Courtesy of Eric Jones, The Apollo Lunar Surface Journal.](image-url)
In addition to surface stabilization, reducing contamination on suits and equipment that is generated during EVAs would also reduce the amount of dust and dirt contamination in habitats, as well as lessen the thermal load for the life-support system because of the “black-body effect” on increased dust. Several concepts have been suggested to accomplish this goal.

Suit ports, such as those used in hazardous materials cleanup operations, allow crewmembers to ingress habitats and rovers without bringing regolith into the habitable volume. This helps to maintain a healthy environment for the crew and equipment.

Suits may be left outside the habitat, as has been considered for the Space Exploration Rover (formerly the Small Pressurized Rover and the Lunar Exploration Rover). As the primary potential vector for dust to enter habitats, leaving the suits outside and periodically cleaning and maintaining those in a separate facility would be an ideal engineering and operational solution.

A very small airlock called a suitlock is added to the structure to protect the suits and to allow access to the suits for repair. NASA created a low-fidelity suitlock on the Space Exploration Rover, as shown in Figure 7.

![Suitport and suitlock on NASA's Space Exploration Vehicle.](image)

In concept, the canopy would close to create a pressurized suitlock for access to suits and equipment for repair and maintenance. Particulate management for suitlock and airlock is addressed in the interior cleaning and protection section.

Novel constructs, such as the Active-Active Mating Adapters developed for the NASA Space Exploration Vehicle (SEV), allow vehicles to dock, thereby eliminating the need to perform EVAs to traverse between rovers and habitats (Figure 8). These docking adapters will need to include active provisions such as retracting dust covers to limit contamination from dust deposited on hatch surface areas while operating undocked.
Other concepts have been proposed, such as pressurized or unpressurized articulating jet ways (Figure 9) that connect surface elements, reducing EVA contamination between immobile assets that would otherwise raise and transport regolith onto space suits and other mission assets. These solutions will require care in design and implementation to avoid tripping and entanglement hazards for EVA, such as those encountered with electrical cables during Apollo EVAs. This consideration is especially important in lunar and other low-gravity environments.
Crews could also use grated surfaces from landing modules by placing them as walkways in high-traffic areas. Tarps placed on the surface have also been suggested. CSFs may provide an ISRU-derived material that integrates conveniently with the regolith. Each of these concepts has its pros and cons, but each is compatible with the multiple approach philosophy for consideration during trade studies.

Samples and equipment that are brought into habitats and rovers also are a source of particulate contamination. Glove boxes with exterior ports help reduce this risk.

![Glove box with exterior ports](image)

Figure 10. Glove box with exterior ports.

These glove boxes will be crucial for Mars missions to mitigate forward and backward contamination and meet Planetary Protection requirements. They will also provide an ambient environment to preserve samples.
Dust-tolerant utility (electrical and fluid) connector will enable recharging of astronaut resources without the need to enter habitats (the Portable Life Support System would need communications, power, water, and oxygen). In addition, these connectors are required for robotic systems such as rovers (for Environmental Control and Life Support System). Utility connectors would also need to handle radial and angular misalignment.

![Image of dust-tolerant connector concept](image1.png)

Figure 11. Left: Dust-tolerant connector concept for consumable recharge with angular and radial misalignment features. Right: Electrical connector prototype undergoing testing with lunar simulant JSC-1AF, at 1 torr pressure, nitrogen atmosphere.

3.4 Exterior cleaning and protection

Passive-cleaning technologies, such as lotus- and gecko-inspired self-cleaning surfaces (Figure 12) combined with active-cleaning technologies, such as the Electrodynamic Dust Shield (EDS), a vibratory surface cleaning system, and the Space Plasma Alleviation of Regolith Concentrations in Lunar Environments by Discharge (SPARCLED) are needed to reduce degradation of key elements such as solar panels and radiators (Figures 13 and 14).

![Image of lotus and gecko](image2.png)

Figure 12. Lotus- and gecko-inspired self-cleaning surfaces.
These cleaning technologies also reduce the amount of time that crews will have to work to keep things clean. During the Apollo surface missions, crew members struggled to stay within timelines because of the amount of cleaning operations they had to perform before reentry into the lunar module.

During Apollo, space suit cleaning primarily consisted of brushing and vacuuming. Brushing produced varying results and abraded surfaces; therefore, using brushes is not recommended. The principal cleaning technology for suits is the air or carbon dioxide (CO₂) shower, perhaps aided by brushes with magnets attached. The air shower is discussed further in the interior cleaning and protection section. Other potential space suit cleaning technologies include the EDS and SPARCLED.

The vibratory surface cleaning technology uses piezoelectric buzzers located under a transparent film over a solar panel that, when activated, would generate standing modes of oscillation to “shake off” dust from the solar panel.
Space suit fabrics can be outfitted with the EDS technology to prevent the accumulation of dust and to remove dust from space suits. (Figure 15). Reliability problems with heavily flexed electrical wiring and the need to cross multiple rotating space suit mobility joints without inhibiting mobility would need to be addressed. Passive dust-resistant surfaces may be a first choice path in development or the electrodynamic shield technology may be restricted to regions on the suit based on special demand (e.g., boots and lower legs) or easier implementation based on the mobility design (e.g., helmet, torso, etc.).

![Figure 15. Lunar simulant dust removal with an EDS on fabric.](image)

Helmets and other equipment that are susceptible to abrasion will be difficult to clean. Because of the high magnetic susceptibility of lunar soil, brushes with magnetic strips attached may prove useful. Strippable coatings, such as those used on motorcycle helmet visors, can maintain a clean surface without abrasion that would be caused by cleaning operations. An active dust mitigation technology, such as the EDS, can also protect helmets and visors without abrasion. The EDS coating can be integrated with the helmet material, as well as with the visor, using transparent electrodes (Figure 16).

![Figure 16. Lunar-simulant dust removal with a transparent EDS. A transparent EDS coating can be integrated with the visor material for dust protection without abrasion.](image)
Exterior protection includes dust covers and dust-tolerant mechanisms. Dust covers for connectors and joints will reduce damage due to dust and dirt entering these points (Figure 17).

![Figure 17. Apollo umbilical dust cover was developed to keep dust out of the fluid connectors on the space suit.](image)

Suit covers can be used to reduce contamination on space suits. A modular system could be donned when beginning EVA and doffed prior to airlock or suitlock ingress (Figure 18).

![Figure 18. ILC Dover’s Reusable Space Suit Cover System.](image)

Porches should be grated such that when crew members “stomp” their feet to knock off dust and dirt, it will fall through the grate, leaving the porch relatively clean. Note that very small particles may not “fall through” in a low-gravity environment, as adhesion forces may be stronger than gravitational forces.

Dust-tolerant connectors and seals will be required to prevent contamination of oxygen, water, fuel, and other critical fluid systems, as well as power systems. After being operated in the dusty environment, fluid connectors will be required to meet specific leak-rate requirements, and electrical connectors will be required to meet resistance requirements. To some degree, dust-tolerant connectors were developed for emergency use with the Apollo Extravehicular Mobility Unit or pressure suit.
Consideration should also be given to using non-contacting and conducting (Figure 20) connections to mitigate contamination in critical connector receptacles. Wireless energy transfer and optical communications are examples of technologies that do not require contact for operation.

Finally, all systems that may be exposed to planetary or lunar regolith must be designed for maintainability in dusty environments. Modularity and encapsulation should be implemented to the largest extent possible to ensure that regolith is not introduced into critical mission systems. Additionally, designs and operation should minimize disassembly and ensure that regolith does not infiltrate vital mission systems. Exterior surfaces should be cleaned prior to disassembly, and then exposed surfaces should be covered with protective covers.
3.5 Interior cleaning and protection

Air showers are used across many industries. This technology could be used to clean space suits and equipment in the airlock or suitlock prior to bringing the space suits into the habitable volume. It would be preferable to have a separate cleaning facility, such as the one proposed in the SEI concept, so that suits are not brought into the habitat. If suits and equipment must be brought in, they should be maintained and repaired in a glove box or vent hood, and crews should follow appropriate bag-in/bag-out procedures.

Suits, major suit subassemblies, and large equipment would require a very sizable glove box or vent hood for effective cleaning/maintenance. These may be too large to fit in a glove box. Partial cleaning in an airlock or suitlock volume and perhaps local dust collection at a work site that would incur lower facility penalties in an exploration setting may be more practical.

The air shower features directional jets that create turbulence to remove dust from space suits and equipment with the general flow downward, moving the dirt under the grated floor to be collected by filters. Suggested filtration includes electrostatic filters with pre-filters to prevent clogging and self-cleaning magnetic filters.

Because of the strong magnetic susceptibility of a majority of the dust, it has been proposed that magnetic catchers be placed under the floor gratings. Likewise, magnetic “wallpaper” could be used to help clean the fine dust from the air.

Figure 21. Example: minimum-volume airlock with air shower and vacuum.
For lunar dust, thin-sheeting magnetic collectors under the grating could be renewed on a roller system. There must also be an acceptable method for cleaning and/or replacing the filters.

The example air shower (Figure 21) includes a vacuum hose and Lotus Coatings. The operational concept for the air shower uses air evacuation during depressurization to create suction for cleaning using the vacuum hose, while the air shower operates using re-pressurization to blow air through the jets.

For Mars, where the atmosphere contains CO$_2$, cleaning technologies used on Earth (e.g., liquid or supercritical CO$_2$, and CO$_2$ snow) may provide more contamination control that may be needed to meet strict human toxicity and planetary protection requirements. Electromagnetic techniques may be helpful on Mars as well as the Moon, as at least portions of the Martian dust are magnetic.

For other destinations where CO$_2$ is not prevalent, waste gases could be collected, compressed, and used for pressure cleaning. Two concepts include: collecting methane waste from the Sabatier oxygen recovery process; and collecting CO$_2$ from waste treatment processes.

An Electrostatic Precipitator – a dust-collecting technology broadly used on Earth – can be used on Mars inside habitats, as well as on atmospheric gas-collecting systems for ISRU. This technology is a particulate collection system that charges and removes dust particles from a flowing gas using electrostatic forces acting on the pre-charged particles.

Electrospray technology recently developed under NASA Small Business Innovative Research funding may also be a useful alternative for airlock and habitat atmosphere cleaning and in removing dust from contaminated surfaces. In this technology, very small quantities of electrically charged fluid (most likely water) are emitted as micron-size droplets that collect dust particles and are collected electrostatically. It can operate at very low air flow velocities and pressure drop reducing power penalties, and reduce or eliminate filter media consumption or cleaning requirements.

Employees in the lunar sample lab at NASA Johnson Space Center have said that, by far, the best method for removing lunar dust from surfaces was to rinse the surface with plain water. A water shower has been suggested as part of planetary surface airlocks. There are challenges with this concept, including how to prevent suit damage. This concept should also be evaluated during trade studies.

Connectors and other sensitive equipment located inside the airlock or suitlock also need to be protected by magnetic systems, protective covers, dust covers, and/or strippable coatings.

Separate facilities for maintenance and repair such as shops, mudrooms, and garages should be considered as layers of the defense to avoid the workload and stress imposed on the crew by cleanup, and loss of the sanctuary that is represented by habitable volumes.

Although not recommended, space suits and equipment may have to be brought into the habitable volume or a separate facility for maintenance and repair. These items, as well as the airlock or suitlock, should be cleaned as thoroughly as possible prior to crews entering to retrieve them. Wet and dry wipes and magnetic brushes work well for removing dust and dirt. When considering brushes, designers should consider the material’s abrasion susceptibility. While in the airlock, crews should don protective personnel equipment such as gloves, respirators, booties, and safety glasses. Vent hoods or glove boxes
should be used and transfer of this equipment should be performed using bag-in/bag-out procedures common throughout the Department of Energy.15 This is a common practice in clean rooms, hazardous materials handling, and in other sectors.

As with exterior operations, interior designs and operations should minimize disassembly and ensure that regolith does not infiltrate vital mission systems. Exterior surfaces should be cleaned prior to disassembly, and then exposed surfaces should be covered with protective covers.

A sink with drain filters should be located next to the airlock/suitlock for crew members to wash any regolith contamination that may be on their skin.

\section*{3.6 Air quality}
Maintaining air quality is accomplished by establishing contamination zones within the habitable volume using air flow.16 This concept is used across many industries, academia, and other government agencies. The Department of Energy uses this principle to contain radioactive particles. Auto companies use air movement when painting to prevent surface contamination. Hospitals use air to prevent spread of germs.

An Electrostatic Precipitator that removes dust from the air flow is a very effective and proven dust filtration technique.14 Self-cleaning magnetic systems also may work as filters.

For human spaceflight missions, controlling airflow with pressure differentials can help control regolith that enters the habitat. It can also control other contamination within the environment leading to a safe work environment for the crew, as well as mission systems.

The example zone-concept shown in Figure 22 uses a docked configuration of a habitat and two Space Exploration Rovers. The contamination zones are established by creating pressure differentials that cause the air to move from the cleanest to the dirtiest zones. Zone 3 consists of the living areas (the rovers and loft) and under the floor (contains avionics boxes), and these areas are maintained as the cleanest areas. Zone 2 consists of working areas on the Habitat Demonstration Unit’s first floor where general and suit maintenance and geology operations are performed. Zone 1 consists of the antechamber in the suitlock, and Zone 1A consists of the suitlock.
Because of potential health concerns, lunar regolith human-exposure limits are being established, as will most likely Martian and asteroid regolith limits. For lunar regolith, the Lunar Airborne Dust Toxicology Assessment Group is currently conducting research and will set recommended exposure limits. These limits are for respirable particles with aerodynamic diameters of less than 3 micrometers. It should be noted, however, with up to four intense short-term exposures to lunar dust, no Apollo astronaut ever showed any long-term adverse effects.

Because of the very fine particle size, detectors must be capable of differentiating between dust particles and smoke. This technology is well established; detectors are available commercially. Alarm systems must answer with the appropriate alarm. Pressure differential indicators are also required to ensure that air flow between contamination zones is functioning properly.

Appropriate simulants are required for testing equipment to ensure that they operate within specifications in dusty environments. Recognizing that no truly representative simulants will be available due to the unique environments in which lunar and Martian dust is generated, it is important to develop these simulants now to fill the requests for simulant tomorrow. In addition, multiple simulants are desirable to test equipment that could operate in different environments and on different planets; each unique environment requires its own simulant series. Thus, the presented layered engineering defense must include the development of simulants to test the technology necessary for human exploration of the solar system.
4.0 Technology Needs Recommendations

Appendix A identifies the capabilities needed to implement this layered engineering defense strategy. The second column lists example technologies that would allow NASA to reach each capability. Finally, the last column identifies the missions that each of these technologies support.

Note that the technologies listed in the table are those known to the LunRCoP. The list is not intended to dismiss other technologies, and these should be assessed as they are identified in future trade studies.

Trade studies should be performed to evaluate the most technically-effective and cost-effective technologies to address each capability. A regolith management portfolio should then be developed. The portfolio should include promising technologies for each capability to ensure a layered engineering defense. Risk mitigation plans should be developed to ensure that each capability is available in time to meet mission schedules.
5.0 References

17 “Electrospray Collection of Lunar Dust.” NASA Tech Briefs, January 2012; 39; (See 20120006555).
6.0 Appendix A

<table>
<thead>
<tr>
<th>Capability</th>
<th>Example Technologies</th>
<th>TRL Level</th>
<th>Design Reference Missions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Stabilization</td>
<td>Sintering</td>
<td>3</td>
<td>Mars</td>
<td>1. Duricrust has been observed and reported. Development of the concept has not been performed.</td>
</tr>
<tr>
<td></td>
<td>Duricrust Inspired Stabilization</td>
<td>1</td>
<td>Lunar Base</td>
<td>2. All the other technologies are commercially available and employed in relevant environments on Earth. Limited testing on the ground has been performed as part of the ISRU and Desert RATS programs.</td>
</tr>
<tr>
<td></td>
<td>Excavation</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grading</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compaction</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palliatives</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Combustion Synthesis Fabric</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create “Tunnels” to minimize regolith transfer during EVAs</td>
<td>Active-Active Mating Adapter</td>
<td>7</td>
<td>Deep Space</td>
<td>Both these technologies are commercially available and are commonly applied on Earth. The mating adapter is also used for space applications, such as the ISS.</td>
</tr>
<tr>
<td></td>
<td>Articulating Jet ways</td>
<td>3</td>
<td>Asteroid Sortie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lunar Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mars</td>
<td></td>
</tr>
<tr>
<td>Suitlock</td>
<td>Suitport</td>
<td>4-5</td>
<td>Deep Space</td>
<td>Both these technologies are commercially available and are commonly applied on Earth for handling hazardous materials. These technologies have been demonstrated on the ground as part of the Desert RATS test.</td>
</tr>
<tr>
<td></td>
<td>Pressurized Canopy System</td>
<td>4-5</td>
<td>Asteroid Sortie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lunar Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mars</td>
<td></td>
</tr>
<tr>
<td>Sample Handling</td>
<td>Glove box with Exterior Ports</td>
<td>4</td>
<td>Asteroid</td>
<td>Glove box technology is widely used in Earth applications for protective handling and transfer of materials.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lunar Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mars</td>
<td></td>
</tr>
<tr>
<td>Passive Cleaning</td>
<td>Lotus Coating</td>
<td>4</td>
<td>Asteroid</td>
<td>Lotus and gecko coating are commercially available for applications on Earth. Lab-scale testing has been performed of the</td>
</tr>
<tr>
<td></td>
<td>Gecko Coating</td>
<td>3</td>
<td>Lunar Sortie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lunar Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mars</td>
<td></td>
</tr>
<tr>
<td>Active Cleaning</td>
<td>EDS</td>
<td>5</td>
<td>Asteroid</td>
<td>1. The principle of an EDS has been exploited for Earth applications.</td>
</tr>
<tr>
<td></td>
<td>SPARCLED</td>
<td>4-5</td>
<td>Lunar Sortie</td>
<td>2. SPARCLED is a technology proposed specifically for space applications. It has been demonstrated at TRL between 4 and 5.</td>
</tr>
<tr>
<td></td>
<td>Magnetic Brushes</td>
<td>4-5</td>
<td>Lunar Base</td>
<td>3. Magnetic brushes and vibratory surface cleaning are established</td>
</tr>
<tr>
<td></td>
<td>Vibratory Surface Dust Cleaning</td>
<td>7</td>
<td>Mars</td>
<td></td>
</tr>
</tbody>
</table>
Appendix A (continued)

<table>
<thead>
<tr>
<th>Capability</th>
<th>Example Technologies</th>
<th>TRL Level</th>
<th>Design Reference Missions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dust Tolerant Mechanisms</td>
<td>Dust Tolerant Seals</td>
<td>4</td>
<td>Asteroid</td>
<td>These technologies are applied for commercial applications on Earth. Optimal communications capability has been demonstrated on manned space missions.</td>
</tr>
<tr>
<td></td>
<td>Dust Tolerant Connectors</td>
<td>4</td>
<td>Lunar Sortie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dust Tolerant Bearings</td>
<td>4</td>
<td>Lunar Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wireless energy transfer</td>
<td>3</td>
<td>Mars</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optical communications</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust Covers</td>
<td>Umbilical Dust Cover</td>
<td>4</td>
<td>Asteroid</td>
<td>These technologies are widely applied for commercial applications on Earth. Very limited testing has been performed in space relevant environments.</td>
</tr>
<tr>
<td></td>
<td>Modular Suit Cover System</td>
<td>4</td>
<td>Lunar Sortie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strippable Coatings</td>
<td>4</td>
<td>Lunar Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mars</td>
<td></td>
</tr>
<tr>
<td>Maintainability</td>
<td>Modularity</td>
<td>7</td>
<td>Deep Space</td>
<td>These technologies are in wide use for commercial applications on Earth and the principles have been applied to hardware for manned missions, including Apollo, ISS and Mars.</td>
</tr>
<tr>
<td></td>
<td>Encapsulation</td>
<td>7</td>
<td>Asteroid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimize Disassembly</td>
<td>7</td>
<td>Lunar Sortie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lunar Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mars</td>
<td></td>
</tr>
<tr>
<td>Air and Airlock Cleaning</td>
<td>Low Power/Mass Air Shower</td>
<td>3</td>
<td>Asteroid</td>
<td>These technologies are available for a wide range of commercial applications on Earth, but have not been demonstrated in a relevant environment for space applications.</td>
</tr>
<tr>
<td></td>
<td>Low Power/Mass Air Handler</td>
<td>3</td>
<td>Lunar Sortie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low Power/Mass Vent hood</td>
<td>3</td>
<td>Lunar Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrostatic Precipitator</td>
<td>3</td>
<td>Mars</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrospray</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water Shower</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Consumable Filtration</td>
<td>Electrostatic Filters</td>
<td>3</td>
<td>Asteroid</td>
<td>These technologies are widely used on Earth, but have not been demonstrated in a relevant environment for space.</td>
</tr>
<tr>
<td></td>
<td>Magnetic Filters</td>
<td>3</td>
<td>Lunar Sortie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lunar Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mars</td>
<td></td>
</tr>
<tr>
<td>Gas Cleaning</td>
<td>Liquid and Supercritical CO2</td>
<td>3</td>
<td>Mars</td>
<td>1. CO2 cleaning technologies are widely used for applications on Earth, but have not been demonstrated in a relevant environment. The CO2 shower is a special application of CO2 snow for use in a space surface exploration application. For this specific application the TRL is 3.</td>
</tr>
<tr>
<td></td>
<td>CO2 Shower</td>
<td>3</td>
<td>Lunar Base</td>
<td>2. Methane recovery and waste gas processing are well established chemical engineering unit operations on Earth. There has been very limited lab-scale testing as part of the ISRU program.</td>
</tr>
<tr>
<td></td>
<td>CO2 Dry Cleaning</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sabatier Methane Recovery</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waste Processing Gas</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure Isolation, Detection and</td>
<td>Dust Detector</td>
<td>7</td>
<td>Asteroid</td>
<td>Particle detection and monitoring are commonly employed in cleanroom and other applications on Earth. Particle detectors have also been demonstrated on the ISS.</td>
</tr>
<tr>
<td>Recovery (FIDR)</td>
<td>Dust Alarm</td>
<td>7</td>
<td>Lunar Sortie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lunar Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mars</td>
<td></td>
</tr>
<tr>
<td>Simulants</td>
<td>Powder Processing</td>
<td>7</td>
<td>Asteroid</td>
<td>These technologies are well established for production and characterization of test materials. Simulants have been prepared for use in ground testing.</td>
</tr>
<tr>
<td></td>
<td>Particle Characterization</td>
<td>7</td>
<td>Lunar Sortie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simulant Formulation</td>
<td>7</td>
<td>Lunar Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mars</td>
<td></td>
</tr>
</tbody>
</table>
Asteroid, Lunar, and Planetary Regolith Management
A Layered Engineering Defense

Sandra Wagner; The Lunar Regolith Community of Practice

Lyndon B. Johnson Space Center
Houston, Texas 77058

National Aeronautics and Space Administration
Washington, DC 20546-0001

Unclassified/Unlimited
Available from the NASA Center for AeroSpace Information (CASI)
7115 Standard
Hanover, MD 21076-1320

13. ABSTRACT (Maximum 200 words)
During missions on asteroid and lunar and planetary surfaces, space systems and crew health may be degraded by exposure to dust and dirt. Furthermore, for missions outside the Earth-Moon system, planetary protection must be considered in efforts to minimize forward and backward contamination. This paper presents an end-to-end approach to ensure system reliability, crew health, and planetary protection in regolith environments. It also recommends technology investments that would be required to implement this layered engineering defense.