
NASA/TP-2015-218577

Formal Software Verification for Early Stage

Design – Final Report

Advanced Software Engineering Technologies Software Producibility Initiative

Dr. Julia Badger, Technical Point of Contact

julia.m.badger@nasa.gov

281-483-2277

Fax: 281-483-1002

National Aeronautics and

Space Administration

Johnson Space Center

Houston, Texas 77058

June 2015

mailto:julia.m.badger@nasa.gov

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space

science. The NASA scientific and technical

information (STI) program plays a key part in

helping NASA maintain this important role.

The NASA STI program operates under the

auspices of the Agency Chief Information

Officer. It collects, organizes, provides for

archiving, and disseminates NASA’s STI. The

NASA STI program provides access to the NASA

Aeronautics and Space Database and its public

interface, the NASA Technical Report Server,

thus providing one of the largest collections of

aeronautical and space science STI in the world.

Results are published in both non-NASA channels

and by NASA in the NASA STI Report Series,

which includes the following report types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA Programs and include extensive data

or theoretical analysis. Includes compilations

of significant scientific and technical data and

information deemed to be of continuing

reference value. NASA counterpart of peer-

reviewed formal professional papers but has

less stringent limitations on manuscript length

and extent of graphic presentations.

 TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies

that contain minimal annotation. Does not

contain extensive analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

 CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or co-sponsored

by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

 TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to

NASA’s mission.

Specialized services also include creating

custom thesauri, building customized databases,

and organizing and publishing research results.

For more information about the NASA STI

program, see the following:

 Access the NASA STI program home page

at http://www.sti.nasa.gov

 E-mail your question via the Internet to

help@sti.nasa.gov

 Fax your question to the NASA STI Help

Desk at 443-757-5803

 Phone the NASA STI Help Desk at

443-757-5802

 Write to:

NASA Center for AeroSpace Information

7115 Standard Drive

Hanover, MD 21076-1320

NASA/TP-2015-218577

Formal Software Verification for Early Stage

Design – Final Report

Advanced Software Engineering Technologies Software Producibility Initiative

Dr. Julia Badger, Technical Point of Contact

julia.m.badger@nasa.gov

281-483-2277

Fax: 281-483-1002

National Aeronautics and

Space Administration

Johnson Space Center

Houston, Texas 77058

June 2015

mailto:julia.m.badger@nasa.gov

Available from:

NASA Center for AeroSpace Information National Technical Information Service

7115 Standard Drive 5301 Shawnee Road

Hanover, MD 21076-1320 Alexandria, VA 22312

Available in electric form at http://ston.jsc.nasa.gov/collections/TRS

Contents

Table of Contents i

List of Figures ii

List of Tables iii

1 Introduction 1

2 Background Information 3
2.1 Natural Language Processing . 3
2.2 Linear Hybrid Automata . 3
2.3 Satisfiability and Vacuity . 4
2.4 Model Checking . 4

3 System Model Description 5

4 Tool Descriptions 6
4.1 Semantic Text Analysis Tool and Edith . 6
4.2 Requirements Conversion Engine . 9
4.3 Logical Consistency Checker . 11
4.4 State Based Transition Checker . 12
4.5 InVeriant . 14

5 Requirements Engineering and Early Design Process 16

6 Examples 17
6.1 Vending Machine . 17
6.2 Simplified Aid for Extravehicular Activity Rescue Example . 20

7 Conclusions and Future Work 30

8 References 31

9 Appendices 34
9.1 STAT Installation Guide . 34
9.2 VARED Installation Guide . 39
9.3 VARED User’s Guide . 41

i

List of Figures

1 The VARED integrated requirements and early design tool chain. 2
2 Diagram of STAT. 7
3 Edith extends STAT and includes an interface to the state model. 8
4 Requirements Conversion Engine. 10
5 Logical Consistency Checker. 11
6 Hybrid automaton that does not have state-based transitions. 13
7 Hybrid automaton that has state-based transitions. 13
8 Coffee pot controllers: a) Timer Controller, b) Heating Element Controller. 14
9 Representation of the InVeriant verification algorithm. 16
10 Vending Machine Controllers. a) Coin Insertion Controller, b) Display Choice Controller. . . 20
11 Vending Machine Controllers. a) Coin Return Controller, b) Dispense Selection Controller. . 21
12 Redesigned Display Choice Controller based on SBT Checker analysis. 21
13 Redesigned Dispense Selection Controller based on controlled constraint analysis. 22
14 SAFER. 23
15 ISS SAFER Power Controller. 27
16 ISS SAFER Controllers. a) Mode Controller and b) AAH Controller. 27
17 ISS SAFER Command Inputs Controller. 28
18 Redesigned ISS SAFER AAH Controller due to SBT Checker analysis. 29
19 Redesigned ISS SAFER AAH Controller due to InVeriant verification. 30
20 VARED Graphical User Interface. 31

ii

List of Tables

1 Coffee Pot State Model . 6
2 Coffee Pot Requirements Translation . 9
3 Coffee Pot Formal Requirements in PANDA Syntax . 10
4 Coffee Pot Formal Requirements Vacuity Analysis . 12
5 Vending Machine Requirements . 18
6 Vending Machine State Model . 19
7 Vending Machine Formal Requirements Vacuity Analysis . 19
8 ISS SAFER State Model . 24

iii

(This page intentionally left blank.)

1 Introduction

Requirements are a part of every project life cycle; everything going forward in a project depends on them.
Good requirements are hard to write, there are few useful tools to test, verify, or check them, and it is
difficult to properly marry them to the subsequent design, especially if the requirements are written in
natural language. In fact, the inconsistencies and errors in the requirements along with the difficulty in
finding these errors contribute greatly to the cost of the testing and verification stage of flight software
projects.

Large projects tend to have several thousand requirements written at various levels by different groups
of people. The design process is distributed and a lack of widely accepted standards for requirements often
results in a product that varies widely in style and quality. A simple way to improve this would be to
standardize the design process using a set of tools and widely accepted requirements design constraints. The
difficulty with this approach is finding the appropriate constraints and tools. Common complaints against
the tools available include ease of use, functionality, and available features. Also, although preferable, it is
rare that these tools are capable of testing the quality of the requirements.

This report describes an integrated requirements and early design tool for software that attempts to
formalize the requirements design process by automatically checking the requirements for quality and con-
sistency. The tool, called Verification and Analysis of Requirements and Early Design (VARED), promotes
traceability by using the requirements to influence the early software models in partially automated ways.
It continues to tie the first two design stages together by using the requirements to formally verify the early
design models that can be created using the tool. By introducing testing, verification, and requirements
tracing capabilities in early design stages, the resulting flight software will be more robust, more correct,
and easier to test and maintain in later design stages.

The VARED tool chain has several parts, which are shown in Figure 1. The inputs to the tool are
natural language requirements that have been written to some common standards as well as a state model
of the system under control and its environment. The requirements are then automatically parsed into
a formalized requirements language using the state model and Natural Language Processing techniques.
The Requirements Conversion Engine (RCE) then automatically converts the formalized requirements into
Linear Temporal Logic (LTL) statements. LTL is an appropriate form for using formal methods both on and
with the requirements. The Logical Consistency Checker (LCC) formally analyzes the LTL version of the
requirements for consistency through satisfiability and vacuity checks, seamlessly incorporating automatic
testing and verification of the requirements statements into the design process.

Two tools are then used to design controllers for the system and verify these controllers and the state
model against the requirements. The State Based Transition (SBT) Checker and the state model information
helps designers create controller models with the appropriate structure needed for the InVeriant symbolic
model checker. InVeriant formally verifies the models against the LTL version of the requirements statements,
which both incorporates automatic testing and verification for the early design stage of software development,
and formally ties the requirements and early design together.

These tools were tested against requirements from several examples, including a real flight project. This
tool chain addresses a need in the early stages of software design and its use will help to reduce the number of
errors that carry over into subsequent stages of software design. This tool chain and the associated technology
development will ultimately help to both reduce overall project cost and increase software robustness and
reliability.

This report will describe the advances that were made in the development of this tool. Section 2 will
briefly describe concepts needed to understand the rest of the report along with some discussion of other
research in this field. Section 3 describes the state model, as that is core to the concepts behind the entire
tool chain, which is presented in Section 4. Section 5 discusses lessons learned about the design process
and systems that can be modeled using these methods, Section 6 provides some examples, and Section 7
concludes the report.

1

Figure 1: The VARED integrated requirements and early design tool chain.

2

2 Background Information

2.1 Natural Language Processing

Natural Language Processing (NLP), a branch of artificial intelligence, is a form of human-to-computer
interaction where the elements of human (natural) language are formalized after extraction of meaningful
information. The translation of natural language (NL) requirements into formal logic has been an active
area of research. Some properties of requirements make them a good target for NL work. Requirements
are supposed to be unambiguous, and therefore are written in more stylized language. Correct requirement
interpretation and formalization depends upon common-sense knowledge and on detailed domain knowledge
which is not explicit in any requirements document (e.g., knowing that a voltmeter is a tool). Such knowledge
is limitless and not generally available in machine-readable form. NLP of requirements has generally not
attempted grand solutions. Researchers instead have focused on one domain and one problem at a time,
where they can limit the amounts of common-sense and domain knowledge needed. They have formalized
sets of insights that give traction under specific circumstances, and then generalized from a sequence of small
wins. Gervasi and Zowghi [1] used a controlled vocabulary and grammar, and devised a formal framework
for such requirements into propositional logic formulae that was checked by a theorem-prover for consistency.
Achour [2] classifies the linguistic methods as lexical, syntactic, or semantic. In semantic approaches, either
parts of speech (substantives, verbs etc.) are analyzed or special sentence constructions are sought. In a
syntactical approach, Saeki et al. [3] analyzes the parts of speech (substantives, verbs, etc.) in order to
derive a formal specification in which the sentence is translated into a message transmission where verbs are
analyzed and declared to be operations (i.e., the message passed between to objects). Chen [4] produces
an Entity-Relationship diagram by searching for special sentence constructions that become the basis for
certain relations.

NL tools have also been used to translate natural language statements to formal logical specifications.
NL2ACTL is a specification tool that provides a prototype translator from natural language expressions to
action-based temporal logic (ACTL) formulae [5]. The NL2ACTL system aims to translate NL sentences,
written to express behavioral properties of a reactive system, to statements of ACTL. It takes each sentence,
parses it, and attempts to complete it by identifying any implicit interpretations that are required to produce
a well-formed expression in the ACTL. One issue with this approach is that it depends upon user interaction
to resolve ambiguities.

2.2 Linear Hybrid Automata

The tool described in this report is based on creating linear hybrid system models of the early stage design.
Linear hybrid systems are versatile instruments that can model many types of systems at a high level.
Hybrid systems are prevalent and have a range of uses; therefore, there are several different ways to model
them [6]. Two of the most common ways depend on the more interesting control interface for the system;
hybrid automata are focused on the discrete mode switching whereas other hybrid systems, sometimes called
ODE models, are focused on the continuous dynamics in the discrete modes. In this work, a linear hybrid
automata model is used, as the continuous dynamics are restricted to be piecewise constant first derivatives.

A linear hybrid automaton H consists of the following components [7]:

1. A finite, ordered list of controlled state variables and clock timers, X = {x1, x2, ..., xn}.

2. A finite, ordered list of passive and dependent state variables, D = {d1, ..., dm}. The set of discrete
states (or discrete sets of continuous states) of the state variable di ∈ D is Λi = {λ1, ..., λni}.

3. A control graph, (V,E), where V is the set of control modes or locations of the system, and E is the
set of control edges or transitions between the different modes of the system.

4. The set of invariants for each location, inv(v), which are the conditions on the state variables, X ∪D,
that must be true in that location.

5. The set of flow conditions, ψi ∶ X → X, for location vi ∈ V , which are the equations that dictate how
continuous, controlled states propagate in each location.

3

6. The set of transition conditions associated with each edge, Σ.

7. The set of transition actions or reset equations associated with each edge, A.

8. The initial conditions of the state variables, init.

2.3 Satisfiability and Vacuity

For temporal (non-branching) logic, a formula is satisfiable if there is a model, or a set of state values through
time, that makes the formula true. Satisfiability is possible to solve via model checking methodologies [8].
This is checked by using a universal model, or a model that allows all traces through the same propositional
space as the formula. The formula then is proved satisfiable if the negation of the formula cannot be satisfied
by the universal model. This approach to satisfiability checking for linear temporal logic formulas is the one
chosen for this tool from a long history of satisfiability checking methodologies [9, 10, 11, 12].

Informally, an LTL formula is vacuous in an expression if that expression does not affect the value of the
formula. Vacuous formulas can indicate a badly-formed expression or at least an unanticipated result from
a specification. It is important to understand the effects of vacuity on a formula, particularly in the face
of satisfiability checks. There are several different types of vacuity and ways to check for it [13]. Syntactic
vacuity [14], which is what this tool chain currently checks for, is suitable for detecting the effect of syntactic
differences in a formula when an expression is present at most one time in that formula. This type of check is
not robust to changes in the semantics of the logic in which it’s expressed; for that, trace vacuity checks are
needed [15]. This check includes determining if formula can be vacuous in a subformula as well. A further
type of vacuity check is necessary for branching logic types, bisimulation vacuity [13], but this does not apply
to this tool due to the restriction of specifications in LTL.

2.4 Model Checking

Verification is a technique to prove the correctness of a system with respect to a specific property using
formal methods. Two of the most popular verification techniques are theorem proving and model checking
[16]. Theorem proving involves using the formal description of the system, which defines sets of axioms and
inference rules, to prove specific properties about the system. In model checking, the system is represented
as a finite state machine or a set of hybrid automata and some specification, often expressed in temporal
logic, is checked by efficiently searching the state space of the system. Model checking is nearly completely
automatic, fast, and able to handle somewhat complex systems, while theorem proving is slower and generally
needs expert guidance to complete.

Model checkers come in many varieties. The symbolic model checkers designed for systems with no
continuous state space, such as Symbolic Model Verifier (SMV) and its variant NuSMV, which verify finite
state machines against requirements written in Computation Tree Logic (CTL) and LTL [17], and an algo-
rithm for checking Mu-Calculus formulas using CTL requirements [18], all use Binary Decision Diagrams
(BDDs) to symbolically represent the state space. These algorithms are capable of verifying systems with
hundreds of discrete state variables. Another ω-automata based model checker, Simple Promela Interpreter
(SPIN), has been demonstrated on several complex distributed systems, including spacecraft control system
requirements [19]. Other symbolic model checkers, such as Bounded Model Checker [20] and HySat [21],
have moved away from BDDs and instead use propositional satisfiability methods [22]. The LCC employs
SMV for its satisfiability checking.

There is also a class of symbolic model checkers that can verify hybrid systems that have both discrete
and simple continuous states. When the continuous dynamics of these systems are sufficiently simple, it is
possible to verify that the execution of the hybrid system will not fall into an unsafe regime [23]. There are
several symbolic model checking software packages available for the analysis of different variants of hybrid
systems and timed automata, including two that are particularly applicable to the systems in this report:
HyTech [7] and PHAVer [24]. PHAVer is a more capable extension of HyTech that is able to exactly verify
linear hybrid systems with piecewise constant bounds on continuous state derivatives and is able to handle
arbitrarily large numbers due to the use of the Parma Polyhedra Library. Unlike “pure” model checkers
that exhaustively and directly search the entire state space, symbolic model checkers are able to abstract
the state space, but they still suffer from state space explosion issues to a varying degree. Many state space

4

reduction techniques and problem abstractions have been explored to try to minimize this problem [25], and
while some of the reduction techniques are automated [26], most of the abstractions are not. The symbolic
model checker, InVeriant, is used for checking controllers modeled as linear hybrid automata against the
formal specification statements generated from natural language requirements.

3 System Model Description

A key concept to this tool chain is the creation of a state model of the system under control and the envi-
ronment. This state model concept derives from previous work on State Analysis [27] and the Mission Data
System [28, 29], but has many important differences meant to satisfy the state-based transition requirement
that will be described in Section 4. The crux of a state model are the state variables, their associated state
values, and if applicable, how they can be controlled.

State variables are extremely important to a system’s model and subsequent control. They tend to be
what a designer cares about in the system and should be directly related to both the physical system and
the requirements for how it will be controlled. It is useful to define different sets of state variables based on
how they will be constrained. The types of state variables that can be defined are passive, controlled, and
dependent state variables.

Definition 3.1. Passive, or uncontrolled, state variables are properties of the system that are not controlled.
For example, the temperature of a device is passive if there are no heating elements or power states available
to affect the temperature. Likewise, absolute wind direction is passive because most systems have no means
of controlling it.

Definition 3.2. Controlled state variables are state variables that are controlled directly. Examples would
be the position of a mobile robot or the power state of a heating element.

Definition 3.3. Dependent state variables are state variables that are affected by a controlled state variable.
The temperature of a device can be a dependent state variable if there are one or more heating elements
associated with that device.

Some passive state variables can be described as stochastic if there is no model that describes the possible
transitions between their states. Other passive state variables are path-dependent when the current state
value influences possible next values the state variable can take. Part of the model for path-dependent state
variables includes a listing of the valid transition paths between the state values. Dependent state variables
are a hybrid between passive state variables and controlled state variables. Though state changes of these
variables cannot be directly commanded, commands to certain controlled state variables do affect their state
values. The model description of these state variables can be complicated. For discrete dependent state
variables, transitions between values are guarded by expressions that describe the state values of affecting
state variables, both controlled and passive. For continuous dependent state variables, there could be two
models; the first is a transition graph between the state values that the variable can take, similar to a path-
dependent state variable, and the second is a model that describes the first derivative of the state variable
with respect to the state values of affecting state variables, both passive and controlled. The temperature
example given above describes this. Temperature ranges such as “less than 50” or “over 200” have transition
graphs based on the physical continuous nature of the state variable, however temperature rate of increase or
decrease can be affected by a nearby heating element being commanded on or off (controlled state variable),
and/or the temperature of the environment (passive state variable).

Controlled state variables similarly have their own model structure. In addition to specifying any path
through its state values, if necessary, the designer must also specify the ways that the state variable can be
controlled. For a simple heating element that can be commanded on or off, a “reset” controlled constraint,
where the value of the state variable is directly assigned by the controller, would be appropriate. Continuous
state variables such as position may have “rate” constraints or other such modeled constraints. For each
controlled constraint type that a state variable has, an appropriate merge rule must be specified per the
designer’s desire. For example, for the heating element example, a designer could chose that a “reset”
constraint could only merge with another “reset” constraint if the values constrained (either ON or OFF)
are equal. When creating merge rules across different constraint types, the result could be no constraint (a

5

Table 1: Coffee Pot State Model

Variable Name Abbreviation Type Values
Heater Temperature HT Stochastic HIGH, LOW

Drip Switch DS Stochastic OPEN, CLOSED
Power Switch PS Stochastic OFF, ON
Timer Limit TL Stochastic OVER, UNDER

Heating Element he Controlled OFF, ON
Timer Value tv Controlled [0,∞)

failed merge), one of the original constraint types, or a third constraint type. Merges can also be conditional
(such as the heating element example given above) or automatic (always possible or always failing).

All state variables can and should be supplemented by aliases and descriptions that will help the NLP
tool identify noun phrases that refer to the state variable. These can include acronyms, nicknames, or other
known names for the same state variable. The state model for an example coffee pot design problem is
outlined in Table 1. Note that things that the human user would affect, like the power switch and the drip
switch, are modeled as stochastic, since to the control system for a coffee pot, the state of those things
essentially are stochastic. The timer is modeled in a special way to aid in the controller design. The timer
limit is chosen due to requirements that are not present, so it is modeled as stochastic. The timer value is a
controlled state variable that will get reset, started, or stopped based on states of the system. The heating
element controlled state variable has one type of controlled constraint, which is a “reset” type constraint.
The timer value, since it is an integer value, has three types of constraints: a “reset” constraint for setting
the timer value back to zero, a “rate” constraint for starting the timer, and a “maintenance” constraint for
maintaining the current value once the timer is stopped.

The state model is constructed by the requirements engineer by deriving information from the require-
ments. It should describe the important parts of the system at a high level and how those parts should
behave. The interaction between the state variables will be described in the early controller design, which
will be modeled as several linear hybrid automata. The state model will be a tool for the requirements
engineer to understand if the set of requirements are complete (i.e., is the model answering questions that
are not covered in the requirements?) and will be just as likely to need updating as the requirements are
when used in the analysis and verification of the requirements and early design. This supplemental step to
requirements creation is a manual check of the quality of the requirements before use of the tool even begins.

4 Tool Descriptions

Several different tools work together to formally analyze and verify sets of natural language requirements
with respect to a state model and with respect to a model of a controller for the system. Developments on
these tools are described in the sections below. The simple coffee pot example described in the previous
section will be expanded throughout the discussions of each of the tools.

4.1 Semantic Text Analysis Tool and Edith

Requirements analysis is the very first crucial step in the software development processes. Stating the re-
quirements in a clear and concise manner not only eases the steps in the rest of the process, but also reduces
the number of potential errors. The requirements document should contain precise, consistent, and com-
plete descriptions of the functional and non-functional properties of the system to be built. Requirements
expressed as natural language text are usually incomplete, inconsistent, and ambiguous. However, require-
ments are supposed to be unambiguous and correct requirement interpretation and formalization depends
upon knowledge that is not explicit in the requirements document. NLP techniques can easily detect the
problem associated with requirements expressed as natural language text and suggest solutions.

STAT (Semantic Text Analysis Tool, diagramed in Figure 2) is an NLP tool that can analyze natural
language sentences. STAT [30] identifies words and phrases that can be classified using the hierarchical
taxonomy in the Aerospace Ontology (AO). The AO [31] includes a wide variety of types of problems

6

Figure 2: Diagram of STAT.

described in aerospace domains, including hardware problems, human and organizational problems, process
problems, paperwork problems, and software problems. STAT identifies each problem tag by matching words
and phrases in the text (e.g., “not listed”) to words and phrases listed in each problem category. Words
or phrases indicating problems are classified and tagged with a problem category from the ontology. STAT
stems the words in the sentence (unclosed = un+close+ed.) Previous work [30, 31] has discussed how STAT
uses the scopes to identify negations and similar discrepancy-terms and to determine which words they
modify. The semantics of the discrepancy-terms are drawn from the AO and an auxiliary knowledge-base.
This gives the capability to extract the same sense from different English phrasings of the same idea, for
example, ‘The hatch is unopened’; ‘The hatch isn’t opened’; ‘The hatch is not open.’ This project uses and
extends STAT’s capability to parse and scope the natural language sentences from a set of requirements.
It focuses on a translation from the compound sentences found in requirements text into formal logic. The
STAT software is used to structure and annotate the text, which can then translate to a formal language
such as SALT.

The Edith extension (Figure 3) allows STAT to be used to reformulate requirement statements into a
structure that can parsed by the Requirements Conversion Engine, if possible. Edith parses the sentences
structure, which is naturally normalized by the fairly structured English language found in requirements
statements, and replaces common words and phrases with general words associated with LTL semantics. It
also queries the state model to find the appropriate form that the subject and other noun phrases should take,
so that the formal requirement statements can be used with the state model downstream in the tool chain. If
Edith encounters a sentence structure or noun phrase that it does not recognize, the requirement statement
is returned to the user with an error message; otherwise, a structured English statement conforming with

7

Figure 3: Edith extends STAT and includes an interface to the state model.

the state model terminology is sent to the RCE.
Edith does simple quality checks on requirements statements, such as ensuring that the statement has a

“shall” or “must” as required by most requirements standards. Edith also checks all noun phrases against
the state model; if no matches are returned, the user is notified and the model can be supplemented or
the wording the requirement adjusted to more clearly describe the part of the system being constrained.
Edith extends STAT’s capabilities in parsing the English language as well, as often times quantifiers are
used in requirements statements, such as “all of” or “at least” or “any.” Negations over conjunctions and
disjunctions are handled by Edith, as well as prepositional phrases that handle duration and causation (for
the temporal operators).

For the translation into the Structured Assertion Language for Temporal Logic (SALT) syntax, Edith
attempts to create expressions from parts of the sentence. It attempts to relate noun phrases that have
matching state variables and state variable values in the state model with a logical connector based on the
verbs present. For example, variants of “to be,” “get,” “has,” or “made” can imply equality. Other parts
of the sentences give clues about how to stitch the logical expressions together. Numerical quantifications
are encoded as logical conjunctions, and durations are translated as implications. Finally, all requirements
statements that have a “shall” or “must” require an “assert always” to be added to the SALT specification.

The translation of the coffee pot requirements to the proper SALT assertion can be found in Table 2.
These requirements were run through STAT/Edith and were generated with the help of the state model
presented in Section 3.

8

Table 2: Coffee Pot Requirements Translation

Natural Language Requirement SALT Expression
CP1 The coffee pot shall reset assert always ((“PS=OFF”

the timer when the main until “PS=ON”)
power switch is turned on. implies next “tv=0”)

CP2 The coffee pot shall turn assert always
off the heating element when (“TL=OVER”
the timer is over the limit. implies “he=OFF”)

CP3 The coffee pot shall turn assert always
off the heating element (“HT=HIGH” implies
when the temperature “he=OFF”)
exceeds the maximum value.

CP4 The coffee pot shall turn on assert always
the heating element when the ((“PS=ON” and
power switch is turned on “HT=LOW”)
and the temperature is lower implies “he=ON”)
than the maximum limit.

CP5 The coffee pot shall turn off assert always
the heating element when (“DS=OPEN”
the drip switch is open. implies “he=OFF”)

Due to the legacy and off-the-shelf open source software used by STAT, this is the only tool in the
VARED toolkit that has special installation instructions (see Appendix 9.1). As such, the output of Edith
is a text file containing the labeled SALT specifications from each of the natural language requirements for
use with the RCE.

4.2 Requirements Conversion Engine

The RCE consists of two parts, shown in Figure 4. The first part is a third-party open source package called
SALT that translates structured English to LTL. SALT [32] is a temporal specification language designed
to create concise statements that are used in model checking and runtime verification. SALT, which is built
on the concept of specification patterns [33], provides common temporal operators and a variety of different
constructs such as exception operators, counting quantifiers, and support for simplified regular expressions.
The SALT language consists of the three layers, each covering different aspects of a specification [34]:

� The propositional layer provides the atomic, Boolean propositions as well as the well-known Boolean
operators.

� The temporal layer encapsulates the main features of the SALT language for specifying temporal system
properties. The layer is divided into a future fragment and a symmetrical past fragment.

� The timed layer adds real-time constraints to the language. It is equally divided into a future and a
past fragment, similar to the temporal layer.

In VARED, only the propositional and temporal layers are currently used.
SALT has a free compiler which takes the SALT specification as input and returns a temporal logic

formula. The SALT compiler supports the syntax of both the Symbolic Model Verifier (SMV) [18] and
SPIN [35] model checking tools. An additional feature of SALT is that it can be automatically translated
into LTL and can be used as a front end to existing model checking and runtime verification tools. In the
current configuration, SALT outputs LTL statements in LTLSPEC, which is SMV’s syntax [18].

The second part of the RCE takes the LTL output and converts it to a form that can be used by the
downstream tools. The RCE returns requirements statements written in LTL in PANDA [36] syntax, which
is used by the LCC directly and the InVeriant model checker indirectly. The coffee pot example requirements
in the Portfolio Approach to Navigate the Design of Automata (PANDA) syntax can be found in Table 3.

9

Figure 4: Requirements Conversion Engine.

Table 3: Coffee Pot Formal Requirements in PANDA Syntax

Requirement in PANDA
CP1 G(((PS = OFF)U(PS = ON))→ (X(tv = 0)))
CP2 G((TL = OV ER)→ (he = OFF))

CP3 G((HT =HIGH)→ (he = OFF))

CP4 G(((PS = ON)&(HT = LOW))→ (he = ON))

CP5 G((DS = OPEN)→ (he = OFF))

10

Figure 5: Logical Consistency Checker.

4.3 Logical Consistency Checker

The LCC, depicted in Figure 5, provides two functionalities, satisfiability and vacuity checks for ensuring
the consistency of the formal requirement statements against the state model. First, it uses PANDA [36]
to format the LTL formulas in conjunction with formalized state model properties to create an SMV input
file. The state model information is added to each requirement in a way that restricts the value of any state
variable that is present in the original requirement to be only one of its modeled values at a time. Essentially,
this means that the LCC creates an exclusive or (XOR) formula for each state variable and adds these using
a logical conjunction to all formal specifications that have that state variable present in any expression. This
ensures that requirements constraining a single state variable to be two different values at the same time
will be caught by the satisfiability checker.

After the requirements have been manipulated appropriately, PANDA selects the correct way to encode
the LTL statement based on available options to create an input file that can be checked for satisfiability
using SMV. This is achieved by model checking the negative of LTL statement against a universal model;
if the output returned is “False,” the requirement is satisfiable against the model. Currently the LCC only
automatically checks single requirements at a time from the output of the RCE (in fact, in the current im-
plementation, the satisfiability checker runs concurrently with the RCE), but it would be simple to manually
combine requirements statements in order to check the satisfiability of a set of requirements concurrently.

For its second functionality, the LCC takes the requirement statements and checks them for vacuity [13].
Because most of the requirement statements are constructed using implication and not bi-conditional state-
ments, the satisfiability checks are often vacuously true. This reduces the effectiveness of that check. There-
fore, understanding if vacuity is affecting the satisfiability check is important to judging the consistency of
the requirements.

The vacuity checker is a syntactic vacuity checker. It works by replacing an expression in the statement
by either “false” or “true” based on the original expression. This technique is limited to formulae that
have only one instance of the expression in question. Because LTL is a non-branching logic, trace vacuity
gives the most accurate and complete answer to the vacuity question; it is a future work item to be able
to accommodate this instead. The LCC provides the user feedback on requirements statements that are
vacuous or unsatisfiable so that the user can correct the initial requirement or the state model of the system
as necessary.

When the coffee pot requirements were run through the LCC, none of the requirements were found to

11

Table 4: Coffee Pot Formal Requirements Vacuity Analysis

Requirement Vacuous
in PANDA Expressions

CP1 G(((PS = OFF)U(PS = ON))→

(X(tv = 0)))
CP2 G((TL = OV ER)→ (he = OFF)) TL = OV ER
CP3 G((HT =HIGH)→ (he = OFF)) HT =HIGH
CP4 G(((PS = ON)&(HT = LOW))→ PS = ON

(he = ON)) HT = LOW
CP5 G((DS = OPEN)→ (he = OFF)) DS = OPEN

be unsatisfiable (as expected), but several were vacuous in certain expressions, as listed in Table 4. These
could be run back through the satisfiability checker replacing the vacuous expression with the value “true” or
“false” that does not vacuously satisfy the overall formula to ensure that the satisfiability check was correct.

4.4 State Based Transition Checker

Once requirements are written and checked for consistency, it is important to use them effectively in sub-
sequent design efforts. Proper testing and verification measures the design against the requirements, and
this is aided by tools that formally link requirements to the design. A tool that promotes requirements
traceability as well as providing design inputs from the state model is described here. Since the ultimate
goal of the VARED tool chain is to verify the controller model against the requirements, it is important to
prepare for this verification during the design stage. The design-for-verification approach has been shown to
increase the capacity of symbolic model checkers for systems with many states. In this case, to counteract the
state-space explosion and abstraction problems faced by many verification techniques, systems are designed
to be “state-based,” as defined below.

A state-based system is defined as follows.

Definition 4.1. Let D = {d1, d2, ..., dn} be the set of passive and dependent state variables. Then, let Γ be
the passive state space, Γ = Λ1×Λ2× ...×Λn. If for each state γi ∈ Γ, there exists at least one location, vj ∈ V ,
such that the passive state satisfies the invariant, vj ⊧ inv(vj), then the hybrid automaton has state-based
transitions.

An example system that does not have state-based transitions is shown in Figure 6. In this example,
D = {SH} and Λ = {GOOD,FAIR,POOR}. The invariants of the locations constrain only two of the three possible
modeled states that the system health (SH) state variable may have. While this construction is valid, there
is no way to predict what will happen to the execution when the FAIR state occurs; however, the addition of
the final passive constraint to the invariant of an existing or a new location would give the system state-based
transitions. A redesigned hybrid automaton with state-based transitions is shown in Figure 7. Both of the
coffee pot controllers, shown in Figure 8, were found to have state-based transitions.

A complex system may require several dependent concurrently executed hybrid automata. However,
composing these hybrid automata into one that describes the entire system can cause an explosion in the
number of discrete locations and transitions between those locations. Even for simple systems, it can be
painstaking to check that the model is state-based by hand; therefore, the software program, SBT Checker,
has been created to aid in the design process. To simplify the design process further, it has been shown that
if the individual state machines that contribute to the overall hybrid system have state-based transitions
and all controlled constraints are consistent, the overall hybrid system has state-based transitions [37].

The SBT Checker leverages this modularity to check that each hybrid automaton has state-based transi-
tions. The algorithm involves comparing the passive constraints in each location’s invariant to each passive
state in the state space Γ for the passive state variables in D. The output of the SBT Checker software
for the hybrid automaton in Figure 6 would be SH == FAIR. The output for the redesigned automaton with
state-based transitions in Figure 7 would be False. The controlled state variable’s consistency constraint
is checked upon the hybrid automata’s composition to a single hybrid system in the verification software
described in the next section.

12

Figure 6: Hybrid automaton that does not have state-based transitions.

Figure 7: Hybrid automaton that has state-based transitions.

13

Figure 8: Coffee pot controllers: a) Timer Controller, b) Heating Element Controller.

The SBT Checker tool allows several separate automata per input file, and also takes the state model as
an input. Each automaton is then compared against the state model and the state values that are missing
from the controller constraints are returned. These missing state values represent modeled states of the
system that are not accommodated for in the given controller; intuitively, means that these states beget
essentially stochastic controller selection since no deterministic assignment has been identified.

4.5 InVeriant

The InVeriant model checker leverages the special relationship between the invariant and the transition
conditions for a hybrid system with state-based transitions. In a passive system with state-based transitions,
if the state variables that are constrained in its locations have discrete states that are all reachable from
each other, then each location in the system is reachable from any other location in the system. In this case,
locations that satisfy the unsafe set are reachable if they exist. The InVeriant software creates the locations
and invariants from the individual hybrid automata and composes it with the unsafe set constraints to find
unsafe locations.

While the assumption that the discrete states of the passively constrained state variables are reachable is
usually a good one, there are times when it is not. In general, these passive state variables are health states
or uncontrollable states of the environment that affect the way the system accomplishes a task. If there was
a health or environment state value that was not reachable, it would not be modeled. However, continuous
dependent state variables such as energy or temperature may be constrained without knowing if a discrete set
of states is reachable. These continuous, rate-driven dependent state variables have models whose discrete
states do not match or correspond with the discrete sets of states that are passively constrained in the hybrid
system. The discrete states in the model represent different rates of change of the state variable, which often
depend on controllable state variables, whereas the discrete sets of states constrained passively in the hybrid
system depend on the continuous state space of the state variable.

The unsafe set is generated directly from the formal requirement statements, and is a collection of disjoint
sets of constraints, Z = {ζ1, ..., ζn}, where each disjoint set of constraints, ζi = {zi1, ..., z

i
ni

}, has separate

14

constraints on individual state variables, and each separate constraint z ∈ (Xd ∪ Ẋc ∪D ∪ Ḋc) ×Q × (R ∪Λ)

constrains a discrete controllable state variable (Xd), the rate of a continuous controllable state variable
(Ẋc), a passive state variable, or the rate of a continuous, rate-driven dependent state variable. Q is the
set of equality and inequality operators. The sets ζ of unsafe constraints are analogous to locations of the
hybrid system, though the different sets in Z are not necessarily incompatible with one another; they are
simply separate unsafe conditions against which the designer wishes to verify the system.

The verification algorithm goes through the following steps to verify a system versus the unsafe set, Z.
A representation of this algorithm is shown in Fig. 9.

1. Find all locations v ∈ V by composing the individual hybrid automata. Merge controlled constraints
in each location and record any inconsistent controlled constraints. If there are any, stop and report
which constraints are inconsistent. If not, continue.

2. For each di ∈ D, the set of discrete states constrained passively in the hybrid system is Λi. Let Mi be
the model of di, where µij ∈Mi is a discrete location in the model. For di ∈ D

d, Λi ≡Mi. However, for
di ∈ D

c, the discrete sets are not always equivalent. Set V ′ = V ; for each di ∈ D
c such that Λi ≠Mi,

V ′ = V ′ ○Mi = {vl ○ µj ∣∀vl ∈ V,∀µj ∈ Mi, vl, µj are consistent }. A composed location v′ = v ○ µ
is defined as having a combined invariant, inv(v′) = inv(v) ∧ inv(µ) and combined flow conditions,
ψv′ = ψv ∧ ψµ.

3. For each ζ ∈ Z, find the composition of the hybrid system and the unsafe set, Yζ = V
′ ○ ζ = {vj ○ ζ ∣∀vj ∈

V, vj and ζ are consistent }. Note that in this case, like the dependent case above, flow equations on
the same state variable are consistent not if they can be merged, but that they are equal. Label all
locations y ∈ Yζ as unsafe and output them.

4. Let the function cons() return the constrained value of a state variable when the function is given
that state variable and a location (or set of constraints) as inputs. If there exists a di ∈ D

c such
that cons(di, y) exists, then a path must be found from init(di) to cons(di, y). There exists some
λij , λ

i
l ∈ Λi such that init(di) ∈ λij and cons(di, y) ∩ λ

i
l ≠ ∅, where Λi = {λi1, ..., λ

i
j , ..., λ

i
l, ..., λ

i
ni

} is a

forward or backward ordered set. Let Λζi = {λij , ..., λ
i
l} be the set containing the two discrete sets

of passively constrained values that satisfy the initial and unsafe constraints and all discrete sets
of states in between. Then for each λin ∈ Λζi , a location v ∈ V ′ must be found such that (λin ⊧

inv(v)) ∧ (sign(cons(ḋi, v)) = sign(cons(di, y) − init(di))) is true. If such a path can be found, the
unsafe set is reachable. This is not yet implemented in the current version of InVeriant.

This procedure is guaranteed by construction to find all locations in which unsafe conditions can occur.
By leveraging the system’s structure, this method is more efficient than other symbolic model checkers such
as PHAVer and HyTech that deal with similar types of systems and it also allows some reasoning about the
flow of continuous state variables. Currently, there is no automatic way to create unsafe set representations
as locations of an automaton needed for InVeriant, so manual incorporation is necessary. Due to the lack
of ability to represent a disjunction between passive and controlled state variable constraints in the current
model framework, these are instead represented as separate unsafe locations with no loss of correctness.
The formal requirement statements must also be negated for proper combination with the overall controller
automaton. Automation of the proper incorporation of the unsafe set directly from the RCE output is a
future goal.

To complete the coffee pot example, the model and controller automata were run through InVeriant
along with the formal requirements in unsafe location form, and the model checker found that Requirement
CP4 did not hold when the controller was in the combined locations “HeaterElementOff+TimerExpired”
and “HeaterElementOff+TimerRunning.” This is because Requirement C4 does not take into account the
timer value, which also affects the powered state of the heating element as per CP2. Therefore, to have a
requirement that dictates when the heating element is on, all such affecting state variables must be included.
Updating CP4 to “The coffee pot shall turn on the heating element when the power switch is turned on, the
timer is running, and the temperature is lower than the maximum limit.” allowed the coffee pot controllers
to satisfy all requirements.

15

Figure 9: Representation of the InVeriant verification algorithm.

5 Requirements Engineering and Early Design Process

During the development of the examples used to test the tool chain, a design process was developed and
analyzed with a eye towards the types of systems and requirements that would most benefit from the use
of this tool. The design process, which results in three products (requirements, state model, and controller
model), is outlined here.

Requirements engineering is the art of describing a specific need within an appropriate scope. Defining
the parameters of how the need must be addressed is the root of requirements. Requirements have different
levels; the first level of requirements speak in general about the problem to be solved. As more levels of
requirements are generated, the specifications become more detailed. Requirements at the subsystem level
should fully constrain the design space in which the system is to be created; however, they should not
overconstrain it. This design process assumes a nominal requirements engineering process in which designers
follow basic best-practices when designing requirements. The requirements that work best with this tool are
those that constrain the control space of a software system. Since the process is state-based, requirements
that indicate changes of state that affect the system are best suited for this tool chain. In general, functional
requirements are the type that fits this definition.

The state model described in Section 3 derives from the requirements. State variables and their associated
values are found in the requirements; complete sets of requirements should cover all values that a state
variable can take in order to cover controller behavior in all modeled states. Controlled constraints and
merge conditions on those constraints should be derived from requirements, as well. If while generating the
model necessary for this tool chain, a designer uncovers questions unanswered by the requirements, then it
is likely that the set of requirements is incomplete and that must be remedied.

The controller model is designed based on the state model and the requirements, using the SBT Checker
tool. As design decisions are made that determine behavior (not just model abstraction decisions), these
must cause updates of the requirements, the state model, or both. Controller design follows the definition
of linear hybrid automata given in Section 2.2. Both the state model and the controller model are specified
in XML format; the requirements must have a label in square brackets proceeding each requirements, and
are specified in a text file.

16

6 Examples

Two other examples were used to test and validate the VARED tool chain, and they are described in this
section.

6.1 Vending Machine

The Vending Machine example describes a simple machine that vends selected items when available and
enough money has been collected. The requirements, model, and early controller design are outlined here,
along with results of using the verification and analysis tool.

Table 5 lists the requirements for the vending machine example, along with their translations to SALT.
A summary of the state model for the vending machine can be found in Table 6. As with the coffee pot
example, the state variables that are affected by the human user are modeled as passive. The coin value
state variable models which coins are inserted. It is path-dependent because it assumes a value of zero for
any time periods during which a new coin is not entered. If another assumption made is that the rate of the
controller is faster than it is possible for a human to enter consecutive coins, the coin value state variable
would need to visit the value of zero between each other value. The time period assumption is important to
the verification of the controller, in order to ensure that coins are not missed by the controller as they are
inserted.

When the formalized requirements statements were run through the LCC, all came back as satisfiable.
The vacuity check did find several expressions, however. These are listed in Table 7. No changes to the
requirements were made based on this analysis.

The controller model was subsequently created, and it is made up of four separate automata, each of
which covers some subset of the requirements. Figures 10 and 11 illustrate these controller models. The Coin
Insertion Controller depicted in Figure 10a dictates reactions to the coin value state variable and derives
from requirements VM1-VM3. In particular, the coin count is increased when a coin is deposited until it
reaches or exceeds the default price. At that point, any coins deposited will be returned. The Display Choice
Controller in Figure 10b determines what is displayed at the user prompt, and derives from requirements
VM4-VM6. The Coin Return Controller in Figure 11a determines the machine’s behavior when the coin
return button is pressed and derives from requirement VM7. Finally, the Dispense Selection Controller in
Figure 11b controls when an item is dispensed and derives from requirements VM8-VM9.

When the controller models were run through the SBT Checker design for verification tool, it was
found that the Display Choice Controller was missing a control law for the state CA=AVAILABLE &
IM=ENOUGH & SB=SELECTION. Since this state describes when the machine is vending, a new state
was added to the display choice controlled state variable (VENDING), and a new location was added to the
Display Choice Controller, as shown in Figure 12.

Subsequently, the controllers were checked with the InVeriant model checker against the negation of the
requirements (as the unsafe set). InVeriant failed to merge controlled constraints on the change state variable
for two locations, one in the Coin Insertion Controller (NotEnoughMoney) and the Coin Return Controller
(CoinReturn). Both locations constrain the change state variable using a “reset” controlled constraint,
and the modeled guard on allowing merges on two “reset” constraints require the constrained values to be
the same. In this case, the merger of these two locations would more aptly be modeled by summing the
constrained values of the two “reset” constraints; in order to make this change in the state model, however,
the Dispense Selection Controller must be updated to guard against dispensing an item at the same time as
the coin return is pressed. Without this update, shown in Figure 13, the controller would reward a tricky
customer with a free item as it both dispensed the selection and returned its full cost.

With the merge conflict resolved, InVeriant was able to check the controller model against the unsafe
set. The verification run found that two requirements could be violated by certain controller locations. Both
requirements VM5 and VM8 would fail in locations where the appropriate invariant conditions were satisfied
and the selection was not available. For requirement VM5, the controller was written that it would default
to the MAKEANOTHERSELECTION message if a selection was not available regardless of the amount of
money input. For requirement VM8, the selection would not dispense if it was unavailable. In both cases,
simply adding the phrase “and the selection is available” to the requirement satisfied both the intent of the
requirements and the verification of the controller model.

17

Table 5: Vending Machine Requirements

Requirement SALT Translation
VM1 The vending machine software assert always

shall add coin value to (“CV!=0” implies
the coin count when a next “ccAdd=CV”)
coin is inserted.

VM2 The vending machine software assert always (“dm=cc”)
shall display current coin count.

VM3 The vending machine software assert always (“IM=ENOUGH”
shall not accept coins if implies (“CV=0”
enough money inserted. or “ch=CV”))

VM4 The vending machine software assert always
shall display a message (“SB=NOSELECTION” implies
“Make a Selection” if there “dc=MAKESELECTION”)
is no selection chosen.

VM5 The vending machine software assert always ((“SB=SELECTION”
shall display a message “Insert & “IM=NOTENOUGH”)
Money” if the selection is chosen, implies (“dc=INSERTMONEY”))
but not enough money inserted.

VM6 The vending machine software assert always ((“SB=SELECTION”
shall display a message “Make & “CA=UNAVAILABLE”)
Another Selection” if the implies
selection is not available. (“dc=ANOTHERSELECTION”))

VM7 The vending machine software assert always
shall return the inserted (“CR=RETURN” implies
money if the coin return (“ch=cc” &
button is pushed. “cc=0”))

VM8 The vending machine software assert always ((“IM=ENOUGH”
shall dispense the selection, & “SB=SELECTION”) implies
if enough money inserted. (“ds=DISPENSING”))

VM9 The vending machine software assert always
shall calculate and dispense the (“ds=DISPENSING” implies
change, if selection dispensed. (“ccSub=100” & “cc=0”))

18

Table 6: Vending Machine State Model

Variable Name Abbrev. Type Values
Inserted Money IM Stochastic ENOUGH

NOTENOUGH
Coin Return CR Stochastic COLLECT

RETURN
Selection Button SB Stochastic NOSELECTION

SELECTION
Choice Available CA Stochastic AVAILABLE

UNAVAILABLE
Coin Value CV Path-Dependent 0, 5, 10, 25
Coin Count cc Controlled [0,120] ∈ I

Change ch Controlled [0,145] ∈ I
Dispense Selection ds Controlled DISPENSING

NOTDISPENSING
Display Choice dc Controlled MAKESELECTION

INSERTMONEY
ANOTHERSELECTION

Display Money dm Controlled [0.0,1.20] ∈R

Table 7: Vending Machine Formal Requirements Vacuity Analysis

Requirement in PANDA Vacuous Expressions
VM1 G((CV ≠ 0)→ (X(ccAdd = CV))) CV ≠ 0
VM2 G(dm = cc) TL = OV ER
VM3 G((IM = ENOUGH)→ IM = ENOUGH

((CV = 0)∣(ch = CV)))

VM4 G((SB = NOSELECTION)→ SB = NOSELECTION
(dc =MAKESELECTION))

VM5 G(((SB = SELECTION) SB = SELECTION
&(IM = NOTENOUGH)) IM = NOTENOUGH
→ (dc = INSERTMONEY))

VM6 G(((SB = SELECTION) SB = SELECTION
&(CA = UNAV AILABLE)) CA = UNAV AILABLE

→ (dc = ANOTHERSELECTION))

VM7 G((CR = RETURN)→ CR = RETURN
((ch = cc)&(cc = 0)))

VM8 G(((IM = ENOUGH) IM = ENOUGH
&(SB = SELECTION)) SB = SELECTION
→ (ds =DISPENSING))

VM9 G((ds =DISPENSING)→ ds =DISPENSING
((ccSub = 100)&(cc = 0)))

19

Figure 10: Vending Machine Controllers. a) Coin Insertion Controller, b) Display Choice Controller.

One final unsafe location was found, which also violated Requirement VM8. The controller location that
results from the state when the vending machine was about to dispense a selection (that was available and
for which enough money had been entered), but the tricky customer hits the coin return button. In this
case, the vending machine does not dispense the item, and rightfully so. The correct update for this failure
is to append another phrase to this requirement stipulating the state of the coin return button.

6.2 Simplified Aid for Extravehicular Activity Rescue Example

The VARED tool was demonstrated on a real-world example, the International Space Station (ISS) Simplified
Aid for EVA Rescue (SAFER). The ISS SAFER, Figure 14, is a small, self-contained, 24-jet free-flyer that
provides adequate propellant and control capability to allow an extravehicular activity (EVA) crew member
to maneuver near the ISS. The ISS SAFER is controlled in six degrees-of-freedom through crew person
inputs from a single hand controller that is attached to the ISS SAFER. The avionics software consists of
four subsystems: Activation, Motion Control, Command Interpreter, and Fault Detection and Checkout.
These subsystems work together to take crew member inputs from the controller and to safely and reliably
translate them into the appropriate thruster firings. The requirements for this software currently exist, and
a subset of the software requirements were used. Requirements were mainly selected based on relevance to
a type of controller, for example, the Automatic Attitude Hold (AAH) controller or controllers affected by
Hand Controller Module (HCM) inputs, for ease of modeling. The full list of requirements used is as follows:

IS121 The ISS SAFER avionics software shall initiate activation when the HCM Power/Test Switch is moved
from the “OFF” position to the “ON” position.

IS133 The ISS SAFER avionics software shall initiate activation when the HCM Power/Test Switch is moved
from the “OFF” position to the “TSTON” position.

IS065 The ISS SAFER avionics software shall initiate the AAH after seating the thrusters during activation.

IS012 The ISS SAFER avionics software shall ignore any hand controller rotation command present at the

20

Figure 11: Vending Machine Controllers. a) Coin Return Controller, b) Dispense Selection Controller.

Figure 12: Redesigned Display Choice Controller based on SBT Checker analysis.

21

Figure 13: Redesigned Dispense Selection Controller based on controlled constraint analysis.

time AAH is initiated until a return to the off condition is detected for that axis or until AAH is
disabled.

IS015 The ISS SAFER avionics software shall terminate the AAH for all three axes if valid rate sensor data
is not received for more than one second.

IS067 The ISS SAFER avionics software shall determine whether the system is in the rotate or translate
mode based on the control mode switch position

IS068 The ISS SAFER avionics software shall interpret the 4 axis inputs as X, pitch, yaw, and roll if the
control mode switch is in the rotate position.

IS069 The ISS SAFER avionics software shall interpret the 4 axis inputs as X, pitch, Y, and Z if the control
mode switch is in the translate position.

IS070 The ISS SAFER avionics software shall prioritize the pilot translational commands such that accel-
eration is provided only along one translational axis with the priority being X first, Y second, and Z
third.

IS017 The ISS SAFER avionics software shall enable the AAH on all three rotational axes if an AAH button
single click is indicated by the HCM.

IS076 The ISS SAFER avionics software shall perform the following actions when AAH is enabled:

(a) Enable AAH for all three axes.

(b) Set the displacement estimates of the three axes to zero.

(c) Set the AAH mode to deceleration.

(d) Light the HCM AAH light-emitting diode (LED).

IS016 The ISS SAFER avionics software shall disable the AAH on an axis if a crew member rotation command
is initiated for that axis.

IS018 The ISS SAFER avionics software shall disable the AAH on all three rotational axes if an AAH button
double click is indicated by the HCM .

IS077 The ISS SAFER avionics software shall perform the following actions when the AAH is disabled:

(a) Disable AAH for all three axes.

22

Figure 14: SAFER.

(b) Set the AAH mode to OFF.

(c) Turn OFF the HCM AAH LED.

IS019 The ISS SAFER avionics software shall terminate the AAH for all three axes if a Self-Test is initiated.

The ISS SAFER model is summarized in Table 8. The model is split between physical state variables
(buttons on the Hand Controller Module, sensors, thruster) and software or virtual state variables. The
physical state variables are modeled as passive state variables, and the software state variables are generally
modeled as controlled state variables. Two exceptions are the sw control activation and the sw self test state
variables. These are modeled as passive because the requirements that dictate when these state variables
change values were not included in this example. To do so would have added more complexity to an already
lengthy example, but there are no technical reasons why these requirements could not also have been handled.

The corresponding SALT code is as follows:

IS121 assert always ((“hcm power=OFF” and next “hcm power=ON”) implies next
“sw control activation=1”)

IS133 assert always ((“hcm power=OFF” and next
“hcm power=TSTON”) implies next “sw control activation=1”)

IS065 assert always (“sw control activation=3” implies
(“sw aah power pitch=ENABLED” and

23

Table 8: ISS SAFER State Model

Variable Name Type Values
hcm power Stochastic ON, OFF,

TSTON
hcm control mode Stochastic TRANS, ROT
hcm aah button Path-Dependent STATIC

SINGLECLICK
DOUBLECLICK

hcm aah led Controlled ON, OFF
hcm input1 Path-Dependent ZERO, PLUS,

PLUS
MINUS

hcm input2 Path-Dependent ZERO, PLUS,
MINUS

hcm input3 Path-Dependent ZERO, PLUS,
MINUS

hcm input4 Path-Dependent ZERO, PLUS,
MINUS

thrusters Stochastic SEATED
NOTSEATED

rateSensor imuHealth Stochastic GOOD, FAIL
sw control mode Controlled TRANS, ROT

sw aah power pitch Controlled DISABLED
ENABLED

sw aah power yaw Controlled DISABLED
ENABLED

sw aah power roll Controlled DISABLED
ENABLED

sw aah mode pitch Controlled OFF, DECEL
sw aah mode yaw Controlled OFF, DECEL
sw aah mode roll Controlled OFF, DECEL
sw control xdot Controlled HCM INPUT1

NOTASSIGNED
sw control ydot Controlled HCM INPUT3

NOTASSIGNED
sw control zdot Controlled HCM INPUT4

NOTASSIGNED
sw control yawdot Controlled HCM INPUT3

NOTASSIGNED
sw control pitchdot Controlled HCM INPUT2

NOTASSIGNED
sw control rolldot Controlled HCM INPUT4

NOTASSIGNED
sw control activation Path-Dependent OFF, 1, 2, 3
sw control self test Stochastic IDLE, ACTIVE

24

“sw aah power yaw=ENABLED” and
“sw aah power roll=ENABLED”))

IS015 assert always (“rateSensor imuHealth=FAIL” implies
(“sw aah mode pitch=OFF” and “sw aah mode yaw=OFF”
and “sw aah mode roll=OFF”))

IS067a assert always (“hcm control mode=TRANS” implies
“sw control mode=TRANS”)

IS067b assert always (“hcm control mode=ROT” implies
“sw control mode=ROT”)

IS068 assert always (“hcm control mode=ROT” implies
(“sw control xdot=HCM INPUT 1” and
“sw control pitchdot=HCM INPUT 2” and
“sw control yawdot=HCM INPUT 3” and
“sw control rolldot=HCM INPUT 4” and
“sw control ydot=NOTASSIGNED” and
“sw control zdot=NOTASSIGNED”))

IS069 assert always (“hcm control mode=TRANS” implies
(“sw control xdot=HCM INPUT 1” and
“sw control pitchdot=HCM INPUT 2” and
“sw control ydot=HCM INPUT 3” and
“sw control zdot=HCM INPUT 4” and
“sw control yawdot=NOTASSIGNED” and
“sw control rolldot=NOTASSIGNED”))

IS070a assert always ((“hcm control mode=TRANS” and
(“hcm aah input1=PLUS” or “hcm aah input1=MINUS”))
implies (“sw control xdot=HCM INPUT 1” and
“sw control ydot=NOTASSIGNED” and
“sw control zdot=NOTASSIGNED”))

IS070b assert always ((“hcm control mode=TRANS”
and “hcm aah input1=ZERO” and (“hcm aah input3=PLUS” or
“hcm aah input3=MINUS”)) implies
(“sw control ydot=HCM INPUT 3” and
“sw control zdot=NOTASSIGNED”))

IS070c assert always ((“hcm control mode=TRANS”
and “hcm aah input1=ZERO” and “hcm aah input3=ZERO”
and (“hcm aah input4=PLUS” or “hcm aah input4=MINUS”))
implies “sw control zdot=HCM INPUT 4”)

IS017 assert always (“hcm aah button=SINGLECLICK” implies
(“sw aah power pitch=ENABLED” and
“sw aah power yaw=ENABLED” and
“sw aah power roll=ENABLED”))

IS076 assert always (“hcm aah button=SINGLECLICK” implies
(“sw aah power pitch=ENABLED” and
“sw aah power yaw=ENABLED” and
“sw aah power roll=ENABLED” and
“sw aah mode pitch=DECEL” and
“sw aah mode yaw=DECEL” and
“sw aah mode roll=DECEL” and “hcm aah led=ON”))

25

IS016a assert always ((“hcm aah input2=PLUS” or
“hcm aah input2=MINUS”) implies “sw aah mode pitch=OFF”)

IS016b assert always ((“hcm control mode=ROT” and
(“hcm aah input3=PLUS” or “hcm aah input3=MINUS”))
implies “sw aah mode yaw=OFF”)

IS016c assert always ((“hcm control mode=ROT” and
(“hcm aah input4=PLUS” or “hcm aah input4=MINUS”))
implies “sw aah mode roll=OFF”)

IS018 assert always (“hcm aah button=DOUBLECLICK” implies
(“sw aah power pitch=DISABLED” and
“sw aah power yaw=DISABLED” and
“sw aah power roll=DISABLED”))

IS077 assert always (“hcm aah button=DOUBLECLICK” implies
(“sw aah power pitch=DISABLED” and
“sw aah power yaw=DISABLED” and
“sw aah power roll=DISABLED” and “sw aah mode pitch=OFF” and
“sw aah mode yaw=OFF” and “sw aah mode roll=OFF” and
“hcm aah led=OFF”))

IS019 assert always (“sw control self test=ACTIVE” implies
(“sw aah mode pitch=OFF” and “sw aah mode yaw=OFF” and
“sw aah mode roll=OFF”))

IS012a assert always ((“sw aah mode pitch=DECEL” and
“sw aah power pitch=ENABLED”) implies
(“sw control pitchdot=NOTASSIGNED” until
(“sw aah mode pitch=OFF” or
“sw aah power pitch=DISABLED”)))

IS012b assert always ((“sw aah mode yaw=DECEL” and
“sw aah power yaw=ENABLED”) implies
(“sw control yawdot=NOTASSIGNED” until
(“sw aah mode yaw=OFF” or “sw aah power yaw=DISABLED”)))

IS012c assert always ((“sw aah mode roll=DECEL” and
“sw aah power roll=ENABLED”) implies
(“sw control rolldot=NOTASSIGNED” until
(“sw aah mode roll=OFF” or “sw aah power roll=DISABLED”)))

Multi-part requirements, or requirements affecting a set of state variables, are broken up into different
statements with no loss of generality or expression.

These requirements were run through the LCC tool. All specifications were satisfiable given the model,
which would be expected. Several vacuous expressions were found for the list of requirements. More work
could be explored with this rich example using combinations of requirements as well as feeding back vacuity
information into the satisfiability checks. In particular, combinations of requirements IS012 and IS016 would
be interesting to analyze in this way.

Four basic controllers were designed from the requirements selected. The Power Controller, shown in
Figure 15, resets state variables based on the power state of the ISS SAFER. The Mode Controller, shown in
Figure 16a, assigns the software control mode and the software directional control inputs to hand controller
inputs based on the state of the hand controller’s mode switch. The AAH Controller, shown in Figure 16b,
represents a separate controller for each of the three attitude axis (pitch, yaw, and roll), and commands the
AAH power and mode per axis based on several inputs. Finally, the Command Inputs Controller, shown in
Figure 17, assigns software directional control inputs to hand controller inputs based on both mode and the

26

Figure 15: ISS SAFER Power Controller.

Figure 16: ISS SAFER Controllers. a) Mode Controller and b) AAH Controller.

27

Figure 17: ISS SAFER Command Inputs Controller.

28

Figure 18: Redesigned ISS SAFER AAH Controller due to SBT Checker analysis.

order of operations in translational commands. For all controllers shown, the leading “sw ” was removed
from appropriate state variables for readability.

The SBT Checker analysis found that each of the three AAH Controllers were missing controller locations
for several states in the state space. A simple change to the invariant constraint on the hcm power state
variable from hcm power == OFF to hcm power ≠ ON in the Off location of each automata was sufficient
to fix the problem. This now accounts for the hcm power state value of TSTON. The redesigned AAH
Controllers are shown in Figure 18.

When the controller model, the state model, and the requirements as the unsafe set were run through
InVeriant, several controlled constraint merge conflicts were uncovered. First, it was necessary to better
specify the behavior of the hcm aah led when the AAH axes are in mixed power states. The requirements
are unclear on this; requirements IS076 and IS077 both mention the LED and both seem to pertain to
actions when all axes are enabled or disabled. However, requirement IS016 clearly states that it is possible
to disable AAH per axis. Since the requirements are incomplete in this area, the choice was made to turn
off the hcm aah led whenever any AAH axis was disabled. The requirements should be updated to more
clearly specify this behavior. The second controlled constraint problem had to do with when the software
directional control inputs were assigned to a hand controller input. If a location merge had constraints both
assigning and unassigning the inputs, the former constraint type was defined to reject that merge. A more
correct behavior, based on the priorities given in requirement IS070, would be to prioritize unassignment
over assignment when merging dissimilar reset values. The model was updated to reflect that behavior.
Finally, it was found that not only did the translational software directional inputs need this priority of
unassignment over assignment, but the rotational directional inputs did as well, due to requirement IS012.

Once the controlled constraint merge problems were addressed, InVeriant was able to find many reachable
unsafe locations. Several requirements needed updates, such as requirements IS065, IS017 and IS076, which
needed to include all of the conditions necessary to have the AAH enabled and in a mode. The AAH
Controllers had to be updated to allow the AAH to turn on when the hcm power was in the TSTON
position as well as the ON position, due to requirement IS133. This was incorrectly modified after the SBT
Checker analysis, but caught by this tool. This update is shown in Figure 19.

Requirements IS068, IS069, and IS070 must specify that the hcm power state is not OFF to be entirely
correct given the complete controller. Requirement IS069 also needs a concept of the priority between
translational axes found in Requirement IS070.

29

Figure 19: Redesigned ISS SAFER AAH Controller due to InVeriant verification.

7 Conclusions and Future Work

The VARED tool chain is meant to be a design process and a set of integrated tools that would bring formal
methods and analysis to the desktop of the requirements engineer. This effort was successful in many ways
in achieving this, and has open work in other areas to more fully realize that vision. The VARED tool chain
integrates a state-based requirements and early design methodology for certain types of requirements with
NLP and formal methods. The VARED tool has defined interfaces and a graphical user interface, shown in
Figure 20, for using most of the parts of the tool chain.

The state-based design methodologies are sensical and expressive for functional software requirements.
Performance-based requirements (such as “the controller shall have an overshoot less than” or “shall display
the number to three decimal places...”) or requirements that spell out math algorithms (such as “the
filter shall be implemented using X algorithm...”), for example, are not well modeled by this methodology.
Requirements that dictate control flow, like the many examples found in this report, do work well with the
design methodology. Many times, it is this control flow that will suffer from incomplete requirements and
misunderstood behaviors more so than requirements that dictate performance requirements. Further work
on the state-based design methodology would include creating more structure for choosing and modeling
variable types, particularly the dependent state variables.

The NLP integration in the VARED tool still needs a lot of work. The state model query functionality
is a good substitute for a domain-specific ontology. Sentence structures and language constructs commonly
found in requirements are also well-handled by the new Edith extension. However, the NLP tool set remains
a tool for an expert user rather than a requirements engineer. More work is needed to bring this functionality
into a domain common to the rest of the tools. First, many of the parts of STAT are unsupported open source
tools that could be updated with supported open source libraries. Many of the communications between
parts within STAT use sockets, which causes major problems when trying to port the heritage code to a
different operating system, which is needed for closer integration with the rest of the VARED tool chain.
Further efforts to make this tool more accessible to the requirement engineer’s desktop include creating more
user prompts for using appropriate language and expanding the types of prepositional constructs and model
queries that can be accommodated by the Edith tool.

The SBT Checker and InVeriant tools are very useful in pointing out problems with both the requirements
and the models. The LCC is not yet automated enough to be very useful, though most of the appropriate
“checking” functionality is in place. An update from syntactic to trace vacuity detection is desired to handle
more complex formulas. Including automated requirement grouping and adjusting satisfiability checks based
on findings from the vacuity checks will allow more requirements problems to be caught in this stage instead
of later on during the controller model checking. This will aid designers when creating the controller models,

30

Figure 20: VARED Graphical User Interface.

as more decisions will be made explicit by the requirements.
Further improvements to the InVeriant model checker would be to implement and increase the speed

of algorithms that must search along the paths of the appropriate state variables, given a set of initial
conditions. It would also be beneficial to loosen the requirement that state-based transitions are based
on the passive state variables only, as less modeling abstraction would be needed in some cases. Finally,
automatic insertion of requirements as the unsafe set would greatly speed up the verification process.

8 References

[1] V. Gervasi and D. Zowghi, “Reasoning about inconsistencies in natural language requirements,”
ACM Trans. Softw. Eng. Methodol., vol. 14, pp. 277–330, July 2005. [Online]. Available:
http://doi.acm.org/10.1145/1072997.1072999

[2] C. B. Achour, “Linguistic instruments for the integration of scenarios in requirement engineering,”
in Proc. of the Third International Workshop on Requirements Engineering: Foundation for Software
Quality, 1997.

[3] M. Saeki, H. Horai, and H. Enomoto, “Software development process from natural language
specification,” in Proc. of the 11th International Conference on Software Engineering. New York, NY,
USA: ACM, 1989, pp. 64–73. [Online]. Available: http://doi.acm.org/10.1145/74587.74594

[4] P. P.-S. Chen, “English sentence structure and entity-relationship diagrams,” Information Sciences,
vol. 29, no. 2-3, pp. 127 – 149, 1983. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0020025583900142

31

http://doi.acm.org/10.1145/1072997.1072999
http://doi.acm.org/10.1145/74587.74594
http://www.sciencedirect.com/science/article/pii/0020025583900142
http://www.sciencedirect.com/science/article/pii/0020025583900142

[5] B.-S. Lee and B. R. Bryant, “Automated conversion from requirements documentation to an object-
oriented formal specification language,” in Proc. of the 2002 ACM symposium on Applied computing.
New York, NY, USA: ACM, 2002, pp. 932–936.

[6] G. Labinaz, M. M. Bayoumi, and K. Rudie, “A survey of modeling and control of hybrid systems,”
Annual Reviews of Control, vol. 21, pp. 79–92, 1997.

[7] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model checker for hybrid systems,” Interna-
tional Journal on Software Tools for Technology Transfer, 1997.

[8] K. Y. Rozier and M. Y. Vardi, “LTL satisfiability checking,” Int J Softw Tools Technol Transfer, 2010.

[9] P. Hansen and B. Jaumard, “Algorithms for the maximum satisfiability problem,” Computing, vol. 44,
no. 4, pp. 279–303, 1990.

[10] M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming,” Journal of the ACM (JACM), vol. 42, no. 6,
pp. 1115–1145, 1995.

[11] J. P. Marques-Silva and K. A. Sakallah, “Grasp: A search algorithm for propositional satisfiability,”
Computers, IEEE Transactions on, vol. 48, no. 5, pp. 506–521, 1999.

[12] M. Mézard, G. Parisi, and R. Zecchina, “Analytic and algorithmic solution of random satisfiability
problems,” Science, vol. 297, no. 5582, pp. 812–815, 2002.

[13] A. Gurfinkel and M. Chechik, “Robust vacuity for branching temporal logic,” ACM Transactions on
Computational Logic (TOCL), vol. 13, no. 1, p. 1, 2012.

[14] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient detection of vacuity in temporal model
checking,” Formal Methods in System Design, vol. 18, no. 2, pp. 141–163, 2001.

[15] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and M. Y. Vardi, “Enhanced
vacuity detection in linear temporal logic,” in Computer Aided Verification. Springer, 2003, pp. 368–
380.

[16] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and future directions,” ACM Computing
Surveys, vol. 28, no. 4, pp. 626–643, 1996.

[17] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tac-
chella, CAV. Springer-Verlag, 2002, vol. LNCS 2404, ch. NuSMV 2: An Open Source Tool for Symbolic
Model Checking, pp. 359–364.

[18] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Symbolic model checking: 1020 states
and beyond,” in Proc. of the Fifth Annual IEEE Symposium on Logic in Computer Science, 1990, pp.
428–439.

[19] F. Schneider, S. Easterbrook, J. Callahan, and G. Holzmann, “Validating requirements for fault tol-
erant systems using model checking,” in Proc. of the Third International Conference on Requirements
Engineering, 1998, pp. 4–13.

[20] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, TACAS/ETAPS. Springer-Verlag, 1999, vol. LNCS 1579,
ch. Symbolic Model Checking without BDDs, pp. 193–207.

[21] M. Franzle and C. Herde, “Hysat: An efficient proof engine for bounded model checking of hybrid
systems,” Formal Methods in System Design, vol. 30, pp. 179–198, 2007, 10.1007/s10703-006-0031-0.
[Online]. Available: http://dx.doi.org/10.1007/s10703-006-0031-0

[22] K. L. McMillan, CAV. Springer-Verlag, 2002, vol. LNCS 2404, ch. Applying SAT Methods in Un-
bounded Symbolic Model Checking, pp. 250–264.

32

http://dx.doi.org/10.1007/s10703-006-0031-0

[23] R. Alur, T. Henzinger, and P.-H. Ho, “Automatic symbolic verification of embedded systems,” IEEE
Transactions on Software Engineering, vol. 22, no. 3, pp. 181–201, 1996.

[24] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past HyTech,” in Proc. of the Interna-
tional Conference on Hybrid Systems: Computation and Control, 2005.

[25] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for model checking software,” SIG-
PLAN Not., vol. 40, no. 1, pp. 110–121, 2005.

[26] R. Bordini, M. Fisher, W. Visser, and M. Wooldridge, “State-space reduction techniques in agent veri-
fication,” in Proc. of the Third International Joint Conference on Autonomous Agents and Multiagent
Systems, 2004, pp. 896–903.

[27] D. Dvorak, M. Indictor, M. Ingham, R. Rasmussen, and M. Stringfellow, “A unifying framework for
systems modeling, control systems design, and system operation,” in Proc. of the IEEE Conference on
Systems, Man, and Cybernetics, October 2005.

[28] D. Dvorak, R. Rasmussen, and T. Starbird, “State knowledge representation in the Mission Data Sys-
tem,” in Proc. of the IEEE Aerospace Conference, 2002.

[29] M. D. Ingham, R. D. Rasmussen, M. B. Bennett, and A. C. Moncada, “Generating requirements for
complex embedded systems using State Analysis and the Mission Data System,” Acta Astronautica,
vol. 58, no. 12, pp. 648–661, June 2006.

[30] J. T. Malin, C. Millward, F. Gomez, and D. R. Throop, “Semantic annotation of aerospace problem
reports to support text mining,” IEEE Intelligent Systems, vol. 25, pp. 20–26, 2010.

[31] J. T. Malin and D. R. Throop, “Basic concepts and distinctions for an aerospace ontology of functions,
entities and problems,” in Proc. of IEEE Aerospace Conference, March 2007.

[32] A. Bauer, M. Leucker, and J. Streit, SALT: Structured Assertion Language for Temporal Logic. Springer
Berlin / Heidelberg, 2006, vol. LNCS 4260, pp. 757–775.

[33] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property specifications for finite-state
verification,” in Proc. of Int’l Conf. of Software Engineering, 1999, pp. 411–420.

[34] A. Bauer and M. Leucker, “The theory and practice of SALT,” in Proc. of 3rd NASA Formal Methods
Symposium, April 2011.

[35] G. Holzmann, The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, 2004.

[36] K. Y. Rozier and M. Y. Vardi, “A multi-encoding approach for LTL symbolic satisfiability checking,”
in FM 2011: Formal Methods. Springer, 2011, pp. 417–431.

[37] J. M. B. Braman, “Safety verification and failure analysis of goal-based hybrid control systems,” Ph.D.
dissertation, California Institute of Technology, 2009.

33

9 Appendices

9.1 STAT Installation Guide

34

1.
a.
b.

2.
a.
b.
c.

3.

4.

5.

6.
a.
b.

STAT Installation

Requirements
Installation
Known Issues

Requirements
VMWare or VirtualBox
CentOS 6.5 i386 DVD1 iso file (find a mirror here:)http://isoredirect.centos.org/centos/6/isos/i386/
Internet connection (for downloading packages)
EdithBundle.tar.gz (obtain here:)http://tommy.jsc.nasa.gov/projects/reconciler/tar
Steel Bank Common Lisp

Go here: http://sourceforge.net/projects/sbcl/files/sbcl/1.0.37
Get the binary tarball: sbcl-1.0.37-x86-linux-binary.tar.bz2

Installation
Install CentOS using the iso file with defaults

Create user named analyst
Use at least 2GB of RAM and 2 cores

On initial boot up, change settings (for convenience)
Turn off screensaver: System > Preferences > Screensaver > uncheck "Activate ..."
Turn off sleep: System > Preferences > Power Management > Display = Never
Turn off updates: System > Preferences > Software Updates > Check = Never

Switch to root user (for all remaining steps)

su -

Install software dependencies (may take a while depending on your connection)

yum -y update
yum -y install java java-devel mysql MySQL-python mysql-server httpd gd-devel gcc
emacs autofs yum-utils perl-XML-Parser perl-GD perl-CPAN perl-YAML expat-devel

Configure perl and libraries. Enter the command and at the cpan prompt, enter the following (enter after each line)cpan

o conf build_requires_install_policy yes
o conf prerequisites_policy follow
o conf commit
exit

Then back at the linux prompt, do:

cpan Digest::SHA Test::More YAML::XS JSON::XS JSON XML::SAX XML::Simple GD::Text
ExtUtils::MakeMaker GD::Graph CGI::Pretty Lingua::Treebank Data::Dumper
Data::Dump Date::Calc Spreadsheet::ParseExcel Time::HiRes

Configure hostname (this must be done after cpan)
Open the file /etc/sysconfig/network
Change the line to say: HOSTNAME=

6.

b.

c.
7.

8.

9.

10.

11.

12.

HOSTNAME=testbed1.jsc.nasa.gov

Save the file and reboot
Install Steel Bank Common Lisp. Note, you may get documentation errors, this is ok. Browse to the directory where the tarball is
located, then:

tar xjvf sbcl-1.0.37-x86-linux-binary.tar.bz2
cd sbcl-1.0.37-x86-linux
sh install.sh

Extract the EdithBundle. Browse to the directory where the tarball is located, then:

mkdir /tmp/edith
cp EdithBundle.tar.gz /tmp/edith
cd /tmp/edith
tar xvf EdithBundle.tar.gz

Unpack the main STAT Source directory

cd /usr/lib/perl5/5.10.0
mkdir -p --mode 0775 STAT
cd STAT
tar xzf /tmp/edith/stat_source.tar.gz
cd ..
chown -R analyst:users STAT

Unpack the UCF Source directory

cd /usr/lib/perl5/5.10.0
tar xzf /tmp/edith/stat_ucf.tar.gz
rm -f MyConfig.pm
chmod 0775 UCF_NLP-stanford
chown -R analyst:users UCF_NLP-stanford
cd UCF_NLP-stanford
rm -f data/asdf-registry/*asd
make

Unpack the public STAT Source directory

cd /var/www/html
tar --mode 775 -xzf /tmp/edith/stat_source_public.tar.gz
chown -R analyst:users *

Configure mysql

12.

13.

14.

15.
16.

a.

b.

service mysqld start
chkconfig --add mysqld
chkconfig --level 2345 mysqld on
mysql -u root < /usr/lib/perl5/5.10.0/STAT/distribution/bin/mysql_setup

Change analyst login shell to tcsh

usermod -s /bin/tcsh analyst

Create the .tcshrc file. If you're still logged in as root, type , then open a new file called and add the following:exit ~/.tcshrc

#/bin/tcshrc
setenv PATH ${HOME}/bin:$PATH
setenv PERL5LIB
/usr/lib/perl5/5.10.0/STAT:/usr/lib/perl5/5.10.0/UCF_NLP-stanford/perl
setenv PERL_AUTOINSTALL '--defaultdeps'
setenv SPELLCORRECTOR_DIR
/usr/lib/perl5/5.10.0/UCF_NLP-stanford/perl/SpellCorrector
setenv PENNSERVER_SOCKET /tmp/socket/lispsocket
setenv PARSER_GROUP users
setenv PERL_READLINE_NOWARN 1
mkdir -p /tmp/socket
alias Stat 'cd /usr/lib/perl5/5.10.0/STAT'
alias ucf 'cd /usr/lib/perl5/5.10.0/UCF_NLP-stanford'

Reboot the computer
Test the Installation

Type at the prompt, then run:Stat

perl -w Spreadsht/loadOnly.pl

Output should show something like:

Finished spread loadonly X at ...

Open a second terminal and run:

ucf
cd lisp
./setupsystem.sh

Then in the first terminal, run:

16.

b.

perl -w Vared/Vared.pl SAFER_SRS --verbose

Output should look something like:

SALT code dumped to ...

If all that works then you're done!

Known Issues
The Stanford Parser (located in ucf/java/stanford-parser) seems to hang sometimes. You can find its process id (so you can kill it) by doing

ps aux|grep java

9.2 VARED Installation Guide

39

1.

2.
a.

1.
2.

3.

1.

2.

VARED Installation
The following set of instructions will guide the user in installation of the VARED software package.

Install Dependencies
Get The Code
Build The Code

Install Dependencies
Apt-get will take care of most of them for you

sudo apt-get install cmake build-essential qt4-dev-tools libboost-dev
libboost-regex-dev libboost-filesystem-dev libreadline-dev libxerces-c-dev
libcppunit-dev lib32stdc++6 libgmp-dev openjdk-7-jdk flex bison -y

Set up environment
Java home needs to be set before the code will build. Add the following to your .bashrc or equivalent, with locations changed
where appropriate, and re-source

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

Get The Code
Create a base directory where you'd like the VARED code to live, then to that directorycd
Use git to clone the repository (you'll need your username/password), be sure to change the url where appropriate

git clone https://bitbucket.org/insert_correct_url/vared.git

Or if you received a tarball file, extract it:

tar zxf vared.tgz

Build The Code
Build

cd vared
make

Source the generated setup file. This will set up the remaining environment variables needed. You may want to add this to your .bashrc
or equivalent

source vared.bash

Note: Two clean targets are available, clean and spotless. Clean will remove the build, bin, and lib directories. Spotless will eliminate
the dependencies which are built such as YamlCpp, Panda, Readline, and SMV and force them to rebuild.

9.3 VARED User’s Guide

41

VARED User's Guide
This document guides a user in the operation of the Verification and Analysis of Requirements and Early Designs (VARED) software suite.

Acronyms
Constructs

Domains
Conditions

Files
Model Files
Locations Files

Applications
RCE
Vacuity Checker
SBT Checker
InVeriant

Graphical User Interface (GUI)
Layout
Operating the GUI

Acronyms
The following acronyms are used in this guide:

VARED = Verification and Analysis of Requirements and Early Designs

SALT = Smart Assertion Language for Temporal logic

PANDA = Portfolio Approach to Navigating the Design of Automata

RCE = Requirements Conversion Engine

SBT = State Based Transition

Constructs

Domains
A Domain is a construct used to separate models into logical sub models to better model large systems. The domain tag in the model files is
required but is currently unused and reserved for future development.

Conditions
A Condition as referred to in this documentation is a construct used by the VARED software to describe logical equations in code. Because
logical equations can be nested, they translate well to XML. Using the Condition types AND, OR, EQ, NEQ, LT, LTE, GT, GTE let us build
complex logical equations quite simply.

An example equation

(VarV = 0 | VarW = 1 | VarX != 2) & (VarY > 3 | VarZ <= 4)

 and its XML counterpart

<condition type="and">
 <condition type="or">
 <condition domain="test" stateVar="VarV" type="EQ" value="0" />
 <condition domain="test" stateVar="VarW" type="EQ" value="1" />
 <condition domain="test" stateVar="VarX" type="NEQ" value="2" />
 </condition>
 <condition type="or">
 <condition domain="test" stateVar="VarY" type="GT" value="3" />
 <condition domain="test" stateVar="VarZ" type="LTE" value="4" />
 </condition>
</condition>

Files

Model Files
Model files in VARED are designed to model a state based system. XML is used to describe each state variable, its states, transitions, and
constraints. The following is a simple example of two state variables.

<?xml version="1.0" encoding="UTF-8"?>
<domainList>
 <domain name="vendingmachine">
 <stateVar name="IM" valueType="discrete" controlType="stochastic"
description="Inserted money">
 <state name="ENOUGH">
 <transition toState="NOTENOUGH"/>
 </state>
 <state name="NOTENOUGH">
 <transition toState="ENOUGH"/>
 </state>
 </stateVar>
 <stateVar name="ch" valueType="integer" controlType="controlled"
description="Change">
 <constraint type="Reset">
 <reset type="EQ" value="F1"/>
 <merge type="Reset" resultType="Reset">
 <mergeCondition type="EQ">
 <variable side="left" name="F1"/>
 <variable side="right" name="S1"/>
 </mergeCondition>
 <mergedConstraint name="F1"/>
 </merge>
 </constraint>
 </stateVar>
 </domain>
</domainList>

A few things to note (by line number above):

Line 1: The standard XML file header, which is required

Line 3: The domain tag describes a simple name for the domain the state variables reside in. Future development may allow for multiple

Sample Model File

domains to interact with each other

Line 4: A State Variable description. The attributes used are as follows:

name = The name this variable will be referred to throughout the code
valueType = The data type of the value of this variable. It can be any of: discrete, real, or integer
controlType = The type of variable. It can be any of: controlled, dependent, path_dependent, or stochastic
initialCondition = The initial state the variable takes
description = Any text the user desires to describe the variable

Line 5: A State description. Only used in discrete state variables, and a single attribute name is a string which describes the state.

Line 6: A Transition description. Describes a transition from the state in line 5 to the toState state describe in this tag. Not required for stochastic
variables.

Line 13: A Constraint description. Describes various constraints on this variable. This helps when merging the variable with others. The type
can be any description the user desires.

Line 14: A Reset description. On a merge, describes the value the variable takes on when reset.

Line 15: A Merge description. Describes what happens when this variable is merged with another variable using this constraint and merge type.
 The resultType is the final output constraint's type.

Line 16: A Merge Condition description. The condition which describes whether the merge is valid. The type is a Condition Type (described
elsewhere). The variables for the merge condition are described inside this tag.

Line 17: A Merge Condition variable. The variables described are used to determine whether the merge is valid, and re-used in the
mergedConstraint and reset tags to help determine the finall output constraint.

Line 20: A Merged Constraint. This tag name determines which side of the mergeCondition tag ends up in the final output constraint if the merge
succeeds.

There is also a element, which describes the flow equation of the state variable. It resides in the constraint element and takes a dynEquation t
 and attribute tag, using the same construct as a Condition.ype value

Locations Files
Locations files in VARED are used to describe the various control states the entire system can be in at any given time. XML is used to describe
each location and its conditions and constraints. The following is a simple example of two Locations and an unsafe Location.

<?xml version="1.0" encoding="UTF-8"?>
<locationList>
 <location auto="CoinReturnControl" name="CoinReturn">
 <condition domain="vendingMachine" stateVar="CR" type="EQ" value="RETURN"/>
 <constraint type="Reset" domain="vendingMachine" variable="ch">
 <value name="F1" value="cc"/>
 </constraint>
 <constraint type="Reset" domain="vendingMachine" variable="cc">
 <value name="F1" value="0"/>
 </constraint>
 <constraint type="Reset" domain="vendingMachine" variable="dm">
 </constraint>
 </location>
 <location auto="DispenseSelectionControl" name="Dispensing">
 <condition type="and">
 <condition domain="vendingMachine" stateVar="IM" type="EQ"
value="ENOUGH"/>
 <condition domain="vendingMachine" stateVar="SB" type="EQ"
value="SELECTION"/>
 <condition domain="vendingMachine" stateVar="CA" type="EQ"
value="AVAILABLE"/>
 </condition>
 <constraint type="Reset" domain="vendingMachine" variable="ds">
 <value name="F1" value="DISPENSING"/>
 </constraint>
 <constraint type="Reset" domain="vendingMachine" variable="ch">
 <value name="F1" value="100"/>
 </constraint>
 <constraint type="Reset" domain="vendingMachine" variable="cc">
 <value name="F1" value="0"/>
 </constraint>
 </location>
 <location auto="unsafe" name="Requirement4a">
 <condition domain="vendingMachine" stateVar="SB" type="EQ"
value="NOSELECTION"/>
 <constraint type="Reset" domain="vendingMachine" variable="dc">
 <value name="F1" value="VENDING"/>
 </constraint>
 </location>
</locationList>

A few things to note (by line number above):

Line 1: The standard XML file header, which is required

Line 2: The full Location list. All locations go in this list.

Line 3: A Location description. The auto attribute specifies which automata this location is associated with, the name attribute is how the
Location will be described in the code and output.

Line 4: A Condition description. The Condition construct as described above is put into XML here. The domain and stateVar attributes refer back
to the state variable involved in that condition. The type and value are as referred to in the Condition construct above.

Line 5: A Constraint description. The constraint tag has attributes for domain and variable, as referred to in the state variable which is
constrained. The value tag on line 6 is optional, and name/value are also as referred to in the state variable.

Line 30: This Location describes an unsafe location as referred to above. It's marked by a special automata name "unsafe".

Sample Locations File

1.
2.
3.
4.
5.

Applications
There are four main applications available in the VARED software suite: RCE, Vacuity Checker, SBT Checker, and InVeriant. In order to run any
of the applications via the terminal, you must first source the vared.bash setup file:

It's encouraged to add this command to your .bashrc or equivalent.

source vared.bash

RCE
RCE accepts a Model file and a SALT file as input, and outputs a PANDA file. It may be run from the terminal with the following syntax:

bin/rce <model file> <salt file> <output file>

Vacuity Checker
Vacuity Checker accepts a PANDA file as input. It may be run from the terminal with the following syntax:

bin/vaccheck <PANDA file>

SBT Checker
SBT Checker accepts a Model file and a Locations file. It may be run from the terminal with the following syntax:

bin/sbtcheck <model file> <location file>

InVeriant
InVeriant accepts a Model file and a Locations file. It may be run from the terminal with the following syntax:

bin/inv <model file> <location file>

Graphical User Interface (GUI)

Layout
The GUI for VARED has a few parts:

The Application selection combo box
File selection pane
Run button Some applications will have a Debug checkbox along with the Run buttonNote:
Status output display
Main output display

1.

2.

3.

4.

5.
6.

7.
8.

Operating the GUI
The applications available in the VARED suite are all available as terminal applications, however the GUI makes them much simpler to run. To
run an application, follow these steps:

Ensure you have sourced the setup file in the terminal window you're running. It's encouraged to add this command tovared.bash
your .bashrc or equivalent.

source vared.bash

Start the GUI by running the binary file located in the directory of the VARED project.VaredGui bin

./bin/VaredGui

Select the application you'd like to run from the Application selection combo box. This will change the file selection pane to the
appropriate input file types required by the selected application.
Click the browse button(s) next to each input file and use the file browser to choose the appropriate file. : An output file will beNote
overwritten if you choose an existing file.
If the application you're running has a Debug checkbox, you may click it to get the debug information output from that application.
Click the Run button. Your mouse pointer should change to a busy state during the run, and any status and/or errors will be displayed to
the Status output display.
Depending on the application, the output will be displayed either continuously during the run, or all at the end, in the Main output display.
To close the GUI, simply click the X in the title bar or use at the terminal window where the GUI was initially run.ctrl-C

A sample InVeriant run:

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including

suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

 June 2015 Technical Publication

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS

Formal Software Verification for Early Stage Design - Final Report

6. AUTHOR(S)
Julia Badger

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBERS

Lyndon B. Johnson Space Center

Houston, Texas 77058

S-1192

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

National Aeronautics and Space Administration

Washington, DC 20546-0001

TP-2015-218577

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified/Unlimited
Available from the NASA Center for AeroSpace Information (CASI)
7115 Standard
Hanover, MD 21076-1320 Category: 18

13. ABSTRACT (Maximum 200 words)

 The Verification and Analysis for Requirements and Early Design (VARED) tool chain has been developed to put tools for formal

methods analysis and model-based engineering methodologies on the desk of the software requirements engineer. The tool chain

consists of a natural language processing tool that, once given a set of requirements and a preliminary state model of the system under

design, can formalize the requirements in Linear Temporal Logic specifications. These formalized requirements can be checked for

consistency (satisfiability and vacuity). The designer is given tools for designing an early representation of the control system

described by the requirements, and the final part of the tool chain is a symbolic model checker that can be used to verify the controller

design against the formal requirements statements. This report describes the development of the tool chain and the state-based design

methodology used in the system development. Several example systems are presented and run through the tool chain, including a real

flight system, the International Space Station (ISS) SAFER (Simplified Aid for EVA Rescue). Finally, an analysis of the applicability

and strengths and weaknesses of the VARED tool chain is presented.

14. SUBJECT TERMS 15. NUMBER OF

 PAGES

16. PRICE CODE

software engineering; verification; design; natural language processing; algorithms;

requirements; VARED; methods analysis; model-based engineering 60

17. SECURITY CLASSIFICATION

OF REPORT

18. SECURITY CLASSIFICATION

 OF THIS PAGE

19. SECURITY CLASSIFICATION

 OF ABSTRACT

20. LIMITATION OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited

Standard Form 298 (Rev Feb 89) (MS Word Mar 97)
Prescribed by ANSI Std. 239-18
298-102

NSN 7540-01-280-5500

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background Information
	Natural Language Processing
	Linear Hybrid Automata
	Satisfiability and Vacuity
	Model Checking

	System Model Description
	Tool Descriptions
	Semantic Text Analysis Tool and Edith
	Requirements Conversion Engine
	Logical Consistency Checker
	State Based Transition Checker
	InVeriant

	Requirements Engineering and Early Design Process
	Examples
	Vending Machine
	Simplified Aid for Extravehicular Activity Rescue Example

	Conclusions and Future Work
	References
	Appendices
	STAT Installation Guide
	VARED Installation Guide
	VARED User's Guide

