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Abstract 

Visualization of spacecraft telemetry is an essential safety critical component to an astronaut 

crew’s ability to interface with their spacecraft. The preferred approach would be to use a 

modern Graphics Processing Unit (GPU) to make the presentation of such telemetry possible. 

The situational experience aboard a spacecraft may mirror modern technologies similar to what 

might be found in the commercial aviation field. Unfortunately, the GPUs available from 

commercial aviation glass cockpit display systems or even the GPUs found in desktop personal 

computers are unsuitable for incorporation into a spacecraft that is expected to travel beyond 

Earth orbit (BEO). The principal factors working against direct application of commercial GPU-

based systems are the radiation environment experienced by a spacecraft traveling BEO and the 

need for the cockpit display systems to be safety certified. Currently, the human space program 

has had a very limited choice of cockpit display systems from aerospace companies. The cost 

associated with such systems is not just the cost to procure and install hardware on a spacecraft, 

but also includes the lifetime display modification and update cost to generate and certify the 

graphical contents used to convey the spacecraft’s telemetry to the crew. This report describes 

the software Graphics Processing Unit (sGPU) development work and the preliminary test results 

of a GPU architecture that may be suitable to not only meet the deep space environment and 

spacecraft situational awareness requirements, but also provide a means of safety certification of 

displays along with potentially reduced life-cycle cost associated with spacecraft displays.  
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1.0 Introduction 

NASA is investigating deep space mission concepts and the systems and technology necessary to 

support those missions. Deep space missions imply large round-trip communication delays 

between human space vehicles and ground controllers. Thus, the burden upon crew will shift from 

a shared responsibility with ground controllers to more fully upon the crew because 

communication delays will require the crew to respond to urgent operational scenarios without 

immediate ground controller support. For mission-critical on-board applications, visualization of 

spacecraft telemetry is an essential safety critical component to an astronaut crew’s ability to 

interface with their spacecraft. Architecture concepts under development require the use of 

graphics processing hardware to enable increased situational awareness of the vehicle through 

high-resolution graphics. Additionally, applications targeting vehicle maintenance as well as the 

maintenance of astronaut health, both psychological and physiological, will be necessary (e.g., 

Telepresence/Telemedicine and augmented reality for just-in-time training or real-time 

maintenance).  

The preferred approach would be to use a modern Graphics Processing Unit (GPU) to make the 

presentation of such visualization applications possible. Unfortunately, the GPU available from 

commercial aviation glass cockpit display systems or even the GPU found in desktop personal 

computers are unsuitable for incorporation into a spacecraft that is expected to travel beyond Earth 

orbit (BEO). The principal factors working against direct application of commercial GPU-based 

systems are the radiation environment experienced by spacecraft while traveling BEO and the need 

for the cockpit display systems to be safety certified. Currently, the human spaceflight has had a 

very limited choice of cockpit display systems from aerospace companies. Those that are available 

are not suitable for deep space missions. 

The cost associated with such systems is not just the cost to procure and install hardware on a 

spacecraft but also includes the lifetime display modification and update cost to generate and 

certify the graphical content used to convey the spacecraft’s telemetry to the crew. This report 

describes the software Graphics Processing Unit (sGPU) development work and the preliminary 

test results of a GPU architecture that may be suitable to not only meet the deep space environment 

and spacecraft situational awareness requirements, but also provide a means of safety certification 

of displays along with potentially reduced life-cycle cost associated with spacecraft displays. 
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2.0 sGPU Architecture 

2.1 Overview 

The sGPU project explores the spacecraft GPU issue in a way that differs from the traditional 

approach of using a commercially available, dedicated silicon-based integrated circuit device to 

provide graphic processing functionality. Instead, the sGPU approach leverages the combination 

of several separate commercial efforts to produce the functionality of a GPU that has a certifiable 

path for use in safety critical systems while at the same time exhibiting sufficient radiation 

tolerance suitable for use BEO. Specifically, the sGPU project capitalizes on the availability of 

vendor-provided: 

 Radiation-tolerant Single Board Computers (SBCs) and field-programmable gate array 

(FPGA) devices 

 Safety critical subset of the open source open graphics language software libraries  

 Commercially available real-time operating systems (RTOS) suitable for use in safety 

critical systems. 

 
Figure 1 shows the sGPU’s conceptual architecture. This solution provides a GPU function capable 

of operating in the BEO radiation environment while at the same time decoupling the proprietary 

relationship between the providers of the GPU hardware and the providers of displayable graphical 

content. Conceptually, the process of creating signals capable of driving external display devices 

begins with the identification of the spacecraft telemetry and the format for how the telemetry is 

to be display to crew members upon the output display device. The Displays and Controls 

Supervisory Process running on the radiation tolerant SBC combines the spacecraft telemetry 

source with the display format layout. The safety critical Open Graphics Library (OpenGL) renders 

a low-level rasterized version of the combined telemetry as described by the display format 

provided by the display database (DB). Once the rasterized data are available, the SBC utilizes a 

hardware bus interface (e.g. Figure 1 HW Bus Interface) to transfer the rendered image data to a 

radiation tolerant FPGA and supporting electronics. At this point, the FPGA firmware captures the 

rasterized format packets from the hardware bus interface and stores them into memory. The rate 

the SBC processes the telemetry into an atomic frame of rasterized data is variable and dependent 

upon the complexity of the displayable content. However, the timing characteristics necessary to 

drive an external display device are static. Therefore, during the final step in the process, the FPGA 

firmware reconciles differences between the rate the SBC renders display contents into a low-level 

rasterized format and the required isochronous transfer of data to the output display device via a 

display electronics device interface (e.g. Digital Visual Interface [DVI]). 
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Figure 1: sGPU Conceptual Architecture 

 
Advantages to this approach are principally twofold. First, radiation tolerant SBCs and FPGAs are 

commercially available. The SBC could even be common to other SBC applications used within a 

spacecraft. This could have implications associated with long-term missions where it might be 

possible to swap components to achieve mission-sparing goals. Second, methods used to describe 

displayable contents derive from a subset of OpenGL routines. Use of OpenGL removes the 

proprietary relationship between the methods used to describe a display and the GPU’s hardware. 

The subset of routines available for this task has been specifically reengineered to meet software 

safety critical criteria; namely, using an RTOS and a display software certified to the DO-178b 

“Software Considerations in Airborne Systems and Equipment Certification” standard. Using a 

familiar set of graphical library routines that are well understood to those who design graphical 

display contents breaks the proprietary relationship previously held by the providers of the GPU 

hardware (one of the large contributing factors to lifetime costs), thus increasing competitive 

options. 

 

To date, two efforts at realizing the sGPU architecture concept have been made. The first 

implementation is based upon a C903 SBC, which is manufactured by AiTech Corporation. It was 

selected for initial investigation because it was available from previous unrelated projects. The 

second implementation is based upon the C925 SBC, also manufactured by AiTech Corporation. 

This implementation was selected to address issues realized during the first iteration. Both 

implementations interfaced to the same FPGA card, an ADM-XRC-5TZ by Alpha Data (AD) 

Corporation. Each of the implementations utilized different interfaces and resources that are part 

of the ADM-XRC-5TZ. Both of these commercial products identified were selected because they 

represent low-cost analogs suitable for use in a development environment instead of attempting to 

prove sGPU concepts using expensive spaceflight-qualified components. This approach permits 

the sGPU project the freedom to explore alternative hardware configurations while remaining 
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committed to components that have a path to flight (i.e. components suitable for use in a human 

spacecraft functioning in the environment BEO). 

 

Even though the project feels confident about the approach of using lab-grade components during 

this development phase for the SBC and FPGA, there are other components that still need to be 

evaluated for the purpose of positioning the sGPU project to support BEO missions. For example, 

the DVI driver components that are a part of the Display Electronic Device Interface and the frame 

buffer memories that are a part of the supporting FPGA electronics must be examined in more 

detail for their radiation tolerance. At this point in the project development cycle, the goal is to 

prove feasibility with the major components having an anticipated path to flight and not to focus 

on examination of the aforementioned less-crucial frame buffer memory and DVI driver card 

components. 

2.2 C903-Based sGPU Implementation  

2.2.1 Design Approach 

The first sGPU implementation was based on the C903 SBC. Figure 2 shows the block diagram of 

the C903-based sGPU implementation. Conceptually, the supervisory process and safety critical 

OpenGL libraries as shown in Figure 1 are allocated to functionality of the C903 block as shown 

in Figure 2. Data flow between the SBC and the radiation tolerant FPGA and supporting electronics 

portion of the design is represented by the 66 MHz Peripheral Component Interconnect (PCI) bus, 

as shown. Next, the functionality of the radiation tolerant FPGA and supporting electronics portion 

of the conceptual sGPU design is allocated to the AD XMC FPGA card. Finally, the functionality 

of the Display Electronic Device Interface is allocated to the DVI driver board. 

 

 
Figure 2: C903 sGPU Block Diagram 
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In the C903 implementation, two FPGAs are utilized. The Virtex 4 FPGA serves as a bridge 

between the SBC PCI bus and the Virtex 5 FPGA via an AD local bus. AD manufactured the 

ADM-XRC-5TZto be used in this fashion when dealing with a PCI bus (i.e. the electrical signaling 

for the PCI bus is fixed and cannot be altered to route PCI bus signals directly to the Virtex 5 

FPGA). In an alternative embodiment, the functionality provided by the PCI Bridge within the 

Virtex 4 FPGA could be assimilated by newly developed Intellectual Property (IP) components 

developed for the Virtex 5 FPGA, but would require the development of a custom FPGA card for 

this purpose. In the exploratory phases of the sGPU development, it seemed prudent to stick with 

commercially available components as much as possible before incurring any overhead associated 

with the manufacture of a custom PCB used to host the FPGA portion of the project. Because of 

the need to interface to the Virtex 4 Bridge function’s local bus, additional IP blocks provided by 

AD were included in the Virtex 5 FPGA’s design to the Virtex 4 provided local bus. These AD IP 

blocks significantly constrained the data throughput. The AD IP components together with the PCI 

bus itself contribute to factors limiting the C903-based design overall system performance 

(performance to be discussed later in the paper). 

 

The software for the C903 implementation has been developed to operate in the VxWorks 6.7 

RTOS environment and consists primarily of ENSCO, Inc. software that combined the supervisory 

process and associated safety critical OpenGL libraries (otherwise known as IGL) with software 

for initializing interfaces and launching the supervisory process. The supervisory control process 

is the software tasked with the gathering of spacecraft telemetry (simulated in this case) and 

combining it with the display format information retrieved from the display DB. 

 

The display DB describes the way the telemetry is intended to be viewed conceptually to the end 

user. The supervisory process then makes calls to IGL to render the display as described in the 

display DB with the combined telemetry to a rasterized format. Calls to the IGL libraries rasterize 

the displayed telemetry as described by the Display DB and stores the resultant rasterized image 

into local processor memory or directly into FPGA frame buffer memory via the PCI bus. 

 

A modern display device such as a Liquid Crystal Display (LCD) monitor requires specific timing 

requirements at both the pixel and frame level to properly display the images on the monitor. The 

specific rates the sGPU must transfer the pixel data to the output device depend upon the resolution 

of the display and desired frame rates anticipated for the output display device. It also must take 

into account vertical and horizontal blanking areas in addition to the visible regions established by 

the display’s selected resolution. The set of supported frame rates and display resolution 

combinations are constrained by the manufacture of the display device and associated industry 

standards (Video Electronics Standards Association [VESA] Monitor Timing Standards). 

 

Currently, the sGPU design is configured to drive a display device supporting a visible 1600x1200 

resolution at a frame rate of 60 Hz. This requires the output stage of the sGPU design (i.e. the 

sGPU Frame Processor IP) to push 1.92e6 pixels (i.e. 1600x1200 pixels) 60 times per second in 
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addition to any required blanked vertical or horizontal pixels data to the DVI Driver board via an 

isochronously timed interface. Use of the term isochronous in this context is intended to convey 

the associated data transfer clock rates are strictly confined and do not wander. This is in contrast 

to systems where the clocked data rates wander considerably as long as the overall average 

aggregate rate remains constant. This strict isochronous timing for the output is necessary for the 

sGPU to conform to accepted standards associated with commercial output display devices (e.g. 

DVI input to a commercially available LCD monitor). 

 

Rasterization of displayable content by the C903 SBC’s Central Processing Unit (CPU) is 

asynchronous to the display frame rate. The use of a frame buffer is necessary as the render rate 

(i.e. the rate a frame of completed display contents is converted to a rasterized format) of the SBC 

is variable dependent upon complexity of the display’s visual content and task loading of the SBC. 

Essentially, the SBC by itself cannot conform to the strict isochronous timing requirements 

necessary to directly drive a display output device. Reconciliation of the C903’s asynchronous 

rasterization frame rate to strict isochronous display rate timing required to interface to a VESA 

compliant output display device is accomplished by the sGPU frame processor IP block (see the 

Virtex 5 component in Figure 2). The memory arbitration block and sGPU frame processor interact 

to convert the asynchronously rendered image data stored in the frame buffer memory into a VESA 

compliant isochronous data stream suitable for driving an LCD monitor. The last step in the 

process is to pass this VESA compliant stream of data over a parallel interface to a DVI driver 

board where it is converted into multiple high-speed serial data paths conforming to industry DVI 

interface specifications. Thus, the sGPU is capable of driving a display output device via an 

industry standard display interface. 

2.2.2 Performance Optimization 

For the first performance optimization approach, the C903’s CPU was directed to store each of the 

1600x1200 pixel frames directly into the FPGA’s frame buffer, one pixel at a time via individual 

transactions over the PCI bus. Utilizing this direct approach allows for checkout of basic system 

connectivity and health of the configuration (including software). Performance testing of the C903-

based sGPU implementation for this first approach resulted in a disappointing rendered frame rate 

at less than 1 frames/second (FPS). (Note: the rendering frame rate is the rate at which the sGPU 

can process the displayable content into a complete rasterized representation and is not the same 

thing as the isochronous display update rate, which remains at a constant 60 Hz.) Even though the 

rendered frame rate was very low, the 60 Hz isochronous display output frame rate provided by 

the sGPU frame processor block functioned as intended and the displayable contents was viewable 

on an attached LCD monitor. 

 

Use of the PCI bus to transfer individual pixels in a PCI bus transaction is highly inefficient where 

a bus transaction is a PCI frame. As a general rule, the efficiency of the PCI bus transaction is 

proportional to the payload size (i.e. the number of pixels) contained within the bus transaction. 

Essentially, this initial exploration used the least-efficient way to transfer data over the PCI bus 
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and contributed to the low render rate. Wherein the initial approach did not yield an acceptable 

frame rate, it did prove the system is capable of displaying telemetry combined into a correctly 

comprised display as dictated by the display DB (Figure 2) and stressed the importance of using 

the PCI bus in more effective transmission modes. Lessons learned were applied to a second 

approach for performance optimization where the CPU and PCI bus were used more efficiently to 

increase the effective rendered frame rate. 

 

The second approach to improve performance focused on leveraging the SBC processing strengths. 

In this approach, the C903 rendered to the C903 memory local to the CPU (i.e. the 100 MHz Error 

Correcting Code Double Data Rate Synchronous Dynamic Random Access Memory) and then 

later utilized Direct Memory Management (DMA) transfers to move the rasterized image data 

from the memory local to the CPU to the FPGA memory (i.e. the frame buffer memory). The C903 

SBC CPU has the best possible rendering performance when manipulating its local memory as 

opposed to forcing the SBC CPU to directly render to the FPGA frame buffer memory locations 

over the PCI bus. The burden or overhead of PCI transactions across the bus makes this direct 

manipulation of memory by the CPU on the FPGA side of the design inefficient.  

 

The C903 SBC’s DMA engine is superior at moving data over the PCI bus when compared to 

using the CPU to move data in memory for two reasons. First, the DMA engine is specially 

constructed to make efficient access to the memory local to the CPU without the need to fetch 

instructions (even from CPU cache) to carry the move operations. Second, the DMA engine makes 

it possible to transfer multiple pixels in a block of pixel data for each PCI bus transaction instead 

of just one pixel per transaction as in the case when the CPU is used to transfer data across the PCI 

bus. The overhead in a PCI transaction is at its worst when the payload (i.e. the number of pixels 

in the transaction) is one. 

 

Performance results regarding the second approach yielded some improvement, but revealed two 

new limiting factors. Even when using the DMA-based pixel block transfer approach, PCI bus 

performance still dominated the C903-based system’s behavior. This “Bus Bound” condition 

effectively caps the system performance rendering rate of the sGPU in the C903 implementation 

to approximately 2 frames per second. It is important to note, the PCI bus throughput issue may 

not only lay with the inherent PCI bus capabilities of the C903, but also with the speed and overall 

data architecture of the AD-provided IP components previously mention that were used in the 

Virtex 4 and 5. These IP components were used as provided by AD and not constructed specifically 

for the sGPU project. The inefficiency is exaggerated by the fact that the target resolution of the 

sGPU is for a 1600x1200 pixel display (e.g. 1 frame is 1.92E6 pixels). 

 

This resolution may seem excessive; however it is intended that in the case of the sGPU design, 

the display device be rotated 90 degrees and divided into an upper and lower display area (i.e. two 

800x1200 pixel areas). The two display areas function as two separate displayable content areas 

displayed on one physical display device (i.e. the 1200x1600 monitor device as shown in Figure 
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2). Lowering the resolution of the display would help the situation by lowering the amount of data 

that would be manipulated, but would compromise the resolution in each display area. 

 

During the evaluation of the second approach, another bottleneck related to the CPU’s ability to 

render the image became apparent. How the CPU uses the buffers during in the OpenGL 

methodologies to render the display contents into a rasterized format has a significant effect on 

performance. When rendering displayable content into a rasterized format it first must clear a 

number of buffers equivalent in resolution to that of the final output resolution of the output display 

device (1600x1200) and then change a fraction of the pixels in those buffers to values representing 

the displayable content’s visible features. The amount of time required by the CPU to represent 

the displayable content’s visible features varies proportionally to the complexity of those 

displayable features. The burden for clearing the display buffers remains constant when following 

the typical OpenGL processing paradigm. The CPU must typically clear all 1.92E6 pixel frame 

locations once each time the displayable content is converted to a rasterized format. 

Conventionally, this process of clearing the entire frame buffer and redrawing the displayable 

content in a rasterized format is repeated for each frame even when there is no change to the 

underlying displayable content’s features. The nature of displayable content for cockpit displays 

is such that typically only small areas of the displayable contents change (such as numbers in a 

field) and a sizable portion of the display remains static.  Thus, for displayable contents reflective 

of what might be used for cockpit monitoring of spacecraft telemetry using a conventional 

approach, the CPU performing clearing and redrawing of static portions of the display impacts 

overall frame rate and is wasteful. 

 

The third attempt at performance optimization focused on ways to mitigate the identified PCI bus 

throughput limitations (bus bound) while simultaneously attempting to mitigate the impact of the 

buffer clear and redraw cycles previously mentioned. During this attempt, it was decide to take 

advantage of some previous unutilized features of the IGL product to vary the rate of clear and 

redraw cycles for different portions of the frame buffer local to the CPU. The ENSCO IGL product 

permits the construction regions of displayable content that vary from other regions that are part 

of the same displayable screen content. For example, if a control such as a textbox changes the 

value it is to display once every 30 frames, then the associated buffer locations associated with 

that textbox only need to be cleared and redrawn in a rasterized format once every 30 frames. This 

is in contrast to the typical method of clearing and redrawing the textbox for each of the 30 frames. 

This potentially represents a significant savings to the number of CPU cycles required in the 

display generation/rasterization process. For the remainder of this paper, this technique will be 

known as “multi-rate” or “draw on demand.” The downside to this draw on demand approach is 

that it requires greater coordination with the creation of the displayable content to implement and 

only works really well when the nature of the displayable content varies in small ways from frame 

to frame (this is typical to the stylized nature of telemetry-based displays associate with human-

rated spacecraft). Also with this approach, it is possible to track which regions of the displayable 
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content have changed and use this knowledge to reduce the amount of data pushed through the 

dominant PCI bottle neck, thus improving overall system performance. 

 

To reduce the amount of data to be pushed through the PCI bottle neck (the most dominate of the 

two performance bottle necks), it was decided to exploit one of the idiosyncrasies identified in the 

addressing of the Virtex 5’s frame buffer memory that came about because of the inclusion of the 

AD provided IP for arbitrating access to the FPGA frame buffer memory. That is, the FPGA frame 

buffer memory was paged and could not be linearly addressed, effectively breaking the frame 

buffer memory and associated displayable screen area into a screen band comprised of 12 vertical 

stripes or bars (see Figure 3 for an illustration). Using the draw on demand approach made it 

possible to identify which equivalent bars in the CPU’s local memory contained changes and then 

to only move the identified frame buffer bars (those with changes) over the PCI bus to the FGPA 

frame buffer memory. Since this greatly reduced the amount of information pushed over the PCI 

bus, the system realized a performance bump to approximately 7 frames per second – a seven-fold 

increase from the initial experience with the C903-based implementation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Illustration of Display Screen Banding 

The next step to improve performance was to only push the area of the displayed telemetry that 

were identified to have changed with the draw on demand method instead of the bars. This would 

further create improvements to the C903-based system’s performance. However, the complexity 

associated with the segmentation of telemetry regions crossed two or more bands made this 

solution unattractive from a software development perspective. The added complexity in software 

design really would not address the root cause issue created by the dominant bus throughput 

bottleneck. Thus, the project’s next steps in sGPU development was to eliminate the bus bound 

bottleneck created by use of the PCI bus. Therefore, work on the C903 stopped in pursuit of an 

SBC that utilized a higher-speed PCI bus.  
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2.3 C925-Based sGPU Implementation  

2.3.1 Design Approach 

Through investigation of other bus options, it was found that a newer version (Version 1.1) of the 

PCI bus standard called the PCI Express (PCIe) would provide eight lanes of PCIe with a 

theoretical bidirectional transfer rate of 2 Gbytes/sec that could potentially provide around 40 FPS 

rates to at least four displays. The PCIe bus is a modern gigabit rated bus and exhibits orders of 

magnitude increase in performance over what was experienced with the C903’s 25-year-old PCI 

bus technology. The C925 from AiTech was selected that contained a PCIe bus as well as having 

a path to a flight processor. The C925 theoretically can accommodate eight lanes of PCIe; however, 

in practice, it was found that due to design defects the C925 could only practically realize four 

lanes of PCIe. However, four lanes of PCIe were more than enough to move ahead with significant 

performance improvements in the sGPU project. 

 

The C925 contained the same I/O connectors as the C903, which minimized hardware changes to 

the chassis, DVI driver board, AD card, and the knowledge gained using the AD FPGA card. 

Figure 4 shows the block diagram of the C925-based sGPU. Like the C903, the C925 has a path 

to spaceflight since the CPU is compatible with the radiation tolerant/hardened 750 Performance 

Optimization with Enhanced Reduced Instruction Set Computing – Performance Computing 

processor. 

2.3.2 Performance Optimization 

The C925 contained the same RTOS and IGL software as the C903 and leveraged the development 

effort based on the C903 with several significant exceptions. Namely, the implementation of the 

C925-based sGPU eliminated the PCI bus and replaced it with the four-lane PCIe bus. Replacing 

the PCI bus with a PCIe bus also made it possible to eliminate the AD-provided FPGA IP 

previously used in the Virtex 4 and Virtex 5 FPGAs that was a part of C903’s PCI-based design 

implementation. This permitted a direct connection between the C925 SBC’s CPU via multiple 

lanes of the PCIe bus to the Virtex 5 FPGA and completely eliminates the use of the Virtex 4 

FPGA required in the C903-based implementation. The newly created Virtex 5 FPGA IP 

associated with the wide band memory arbiter significantly increased the memory bandwidth to 

the FPGA frame buffer memory by increasing the data path width to the frame buffer memories 

from 32 bits (from the C903-based design) to 128 bits in width.  
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Figure 4: C925 sGPU Implementation Diagram 

 

Another deviation from the C903 method was using a draw on demand approach that provided a 

simple way of updating the displays without the complexity of the C903 method of updating the 

entire display when only portions of the display data had changed. Figure 5 notionally shows the 

draw on demand approach where one-color band represents a full frame/screen of data.   Utilizing 

the draw on demand concept and the ability to push complete frames (frame resolution of 

1600x1200 pixels) of rendered memory at much higher rates (compared to the C903) to the FPGA 

frame buffer memory, the C925 sGPU implementation was able to achieve an overall system 

rendering performance of approximately 27 to 29 frames per second (depending on the complexity 

of the displayable content). In comparison, the C903 implementation was at best able to achieve a 

rendered frame rate of 7 frames per second.  
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Figure 5: Illustration of Draw-on-Demand Approach 

Preliminary timing analysis shows that with four PCIe bus lanes, it takes about 34 milliseconds 

to render and push/transmit rendered frame data to the frame buffer synchronous data random 

access memory via the Wide-band Memory Arbiter. Scope measurements show that the PCIe bus 

is only 40% utilized during direct memory access transmissions. At this point, it is unclear why 

the bus is underutilized. Once this issue is resolved, increased FPS performance well over 30 

FPS is expected. 
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3.0 Conclusion 

 
Preliminary results indicate the sGPU is capable of rendering the stylized graphical displays 

typically used for safety critical displays. The latest benchmarks for the C925 (~30 FPS) show a 

better than 3X increase in FPS performance than the C903 (6-7 FPS) sGPU version. The team 

plans to continue to explore means to effectively increase the transfer rate of rendered frames 

between the C925 SBC and the FPGA. Planned improvements to the sGPU suggest the 

feasibility of reaching display render rates beyond 40 FPS. It is anticipated through use of 

software optimization techniques the sGPU will reach rates acceptable for the display of safety 

critical displays while at the same time exhibiting radiation tolerant behavior suitable for use 

BEO. Supporting components that make up the sGPU, such as the DVI board, have yet to be 

vetted for their radiation tolerance and represent an area of future work. The team believes it is 

possible to achieve radiation tolerance for this portion of the system based on prior examples of 

FPGA development utilized in projects that have already been used BEO. However, exploration 

of this aspect of the system definitely bears more discussion and practical testing to show the 

feasibility of using a radiation tolerant FPGA along with other supporting display electronics. 
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