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INTRODUCTION 

Existing research has reliably demonstrated the respiratory and cardiovascular effects of carbon 

dioxide (CO2) inhalation at moderately increased levels, with documented physiological changes to 

heart rate, blood pressure, tissue pH, and blood solubility (for a review of the human health risks of 

acute elevated CO2 exposure, see Rice, 2004).  Studies of indoor air quality have linked increased 

levels of ambient CO2 with physiological symptoms such as headache, fatigue, and sore throat 

(Apte et al., 2000; Seppanen et al., 1999; Wargocki et al., 2000).  High levels of CO2 (35%) have 

reliably resulted in activation of the hypothalamic-pituitary-adrenocortical (HPA) axis and 

subjective anxiety responses in healthy individuals (Argyropoulos et al., 2002), as well as panic 

attack-like symptoms (Colasanti et al., 2008; Griez et al., 2007) and experiences of physiological 

stress (Consolazio & Fisher, 1947; Kaye et al., 2004). 

While significant neurological findings correspond to high levels of CO2 exposure, less clinically 

significant cognitive effects may occur at a much lower level.  These cognitive changes and the 

exposure thresholds at which they occur are less well established than their physiological 

counterparts; this paper, therefore, reviews the existing literature on the cognitive, neurological, 

and psychomotor effects of increased CO2 exposure, with the objective of identifying research 

areas in which further investigation remains necessary. 

In particular, this investigation is motivated by the chronic exposure to elevated ambient CO2 

concentrations experienced by astronauts aboard the International Space Station (ISS), and the CO2 

exposure-related symptoms that have been reported by astronauts on orbit (James, 2007; Law & 

Watkins, 2009).  Such exposure may negatively affect crew health and operations, including 

mission safety and the successful completion of scientific goals. 

PHYSIOLOGICAL EFFECTS OF CO2 EXPOSURE  

Carbon dioxide (CO2) alters physiology in well-described ways terrestrially.  In the bloodstream, 

CO2 reacts with water to form carbonic acid (H2CO3), which then dissociates into bicarbonate 

(HCO3
-) and H+.  The decrease in pH activates the medullary and peripheral arterial 

chemoreceptors, stimulating ventilation in the respiratory muscles and resulting in increased tidal 

volume and expiratory drive (SMAC, 1996). 

CO2 is also a potent vasodilator.  As CO2 levels rise to 3% (23 mm Hg), exercise tolerance 

decreases, while heart rate, blood pressure, and resting energy expenditures increase (Cooper, 

1970).  Early symptoms of exposure include air hunger and increased respiration. 

Dizziness, headaches, and shortness of breath are also common.  Exposure to higher CO2 

concentrations may result in confusion, heart palpitations, sweating, chest pain, anxiety, and panic 

attacks (Maresh, 1997; Beck, 1999; Woods, 1988).  At levels as high as 10% (76 mm Hg) inhaled 

CO2, severe dyspnea, vomiting, disorientation, and hypertension will develop, with prolonged 

exposure resulting in seizures and the eventual loss of consciousness (Cooper, 1970). 
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A rapid rise to 30% CO2 (228 mm Hg) will result in acidosis, premature ventricular contractions, 

low or inverted P waves, increased T-wave voltages, and a marked increase in the QT interval 

(SMAC, 1996).  Death has been reported at 20% to 22% CO2 (152-168 mm Hg) (Dalgaard, 1972). 

A single inhalation of 35% CO2 reliably triggers the human stress system neuroendocrine response 

(HPA axis activation), as measured by plasma cortisol, cardiovascular change, and subjective 

anxiety responses in healthy participants (Argyropoulos et al., 2002). 

Persistent, long-term health effects of acute high-level CO2 exposure may include chronic 

headaches, vertigo, memory and concentration impairments, and poor sleep.  Prolonged low-level 

CO2 exposure, in turn, may lead to long-term negative effects on bone metabolism and related 

blood calcium concentrations (Rice, 2004). 

MOTIVATIONS 

Terrestrial levels of ambient CO2 are about 0.03% by volume (0.23 mm Hg).  These levels are 

chronically elevated on the ISS: typically, CO2 concentrations aboard the ISS are about 0.5±0.2% 

(2.3-5.3 mm Hg), with large variations experienced; mean 7-day CO2 levels have been recorded at 

3.39 mm Hg, with a mean 7-day peak CO2 level at 4.50 mm Hg (Law, 2014). 

Assessing the cognitive and psychomotor effects of increased CO2 has particular relevance for 

safety in spaceflight: in their review of challenges associated with psychosocial and 

neurobehavioral health in long-duration spaceflight, De La Torre et al. (2012) address the 

importance of cognitive functioning and the monitoring of decision-making in operational 

spaceflight. 

In their 2009 paper, Law and Watkins discuss the physiological symptoms resulting from increased 

environmental exposure to CO2 in spaceflight and the operational implications for crew biomedical 

health.  Symptoms included headaches and lethargy, and findings were based largely on informal 

crew reporting.  Individual predisposition to CO2 retention and differences in adaptation to 

microgravity were identified as possible contributing factors to variability in symptom incidence; 

the authors also stressed the need for further research to review occupational limits for CO2 

exposure. 

A review of the physiological effects of prolonged exposure (>30 days) to increased CO2 

concentrations did not produce findings useful for determining exposure standards or predicting 

inter-individual susceptibility (James & Macatangay, 2009; James, 2009).  However, findings 

suggest that CO2-related symptoms may occur in spaceflight at lower concentrations than predicted 

by terrestrial studies, warranting further directed study of human performance effects of increased 

CO2 exposure in microgravity (Cronyn et al., 2010). 
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METHODS 

This review surveyed 75 research articles, identified through a keyword-driven literature search.  

Of the articles surveyed, 28 were identified as relevant to cognition (including memory, attention, 

reasoning, performance, and decision-making) and/or psychomotor functioning and 12 to sleep 

(including vigilance, alertness, and circadian effects of elevated CO2 exposure); all others were 

limited to physiological effects, the vast majority of which included headache as a symptom.  

Research fields of the assessed articles spanned neuroscience, naval research, diving physiology, 

aviation, mountaineering, and medical sciences.  Three articles pertained directly to CO2 exposure 

effects observed in astronauts aboard the ISS. 

The studies surveyed were categorized in 2 ways: exposure duration (“acute” or “chronic”) and 

relative level of increased exposure (“low,” “medium,” or “high”).  “Acute” exposure was defined 

as a one-time or short-duration exposure (lasting less than 1 hour) to elevated levels of CO2, 

whereas “chronic” exposure was defined as repetitive or prolonged inhalation at increased CO2.  

The level of exposure was determined relative to the concentration range experienced on the ISS, 

to highlight which studies were methodologically most consistent with ISS levels of CO2; in this 

respect, studies that assessed CO2 concentrations up to 3% were designated “low” level (most 

operationally relevant), whereas studies with ranges from 3% to 10% were designated “medium,” 

and those above 10% were designated “high” (least operationally relevant); these designations will 

be referred to in the discussion of findings. 

EFFECTS ON COGNITION AND PSYCHOMOTOR FUNCTIONING 

Existing studies offer conflicting indications of CO2 exposure effects on perception, motor 

functioning, and inhibitory control, as well as higher-order cognitive processes such as memory, 

concentration, decision-making, and task performance.  Several studies point to decreased alertness 

and concentration following increased CO2 exposure (Frey et al., 1998, low-chronic exposure 

category; Rice, 2004, medium-acute exposure category), and a decline in the visual perception of 

motion (Yang et al., 1997, low-acute exposure category). 

In a diving chamber study, 4 participants experienced prolonged exposure (26 days) to modestly 

elevated ambient CO2 (0.7% and 1.2% concentrations).  Cognitive and visiomotor performance 

were assessed before, during, and after exposure; only visiomotor performance impairments were 

observed, although these effects may have been related to the time course of chamber adaptation 

(Manzey et al., 1995; Manzey & Lorenz, 1998). 

Satish et al. (2012) have reported an association between increasing CO2 concentrations and 

impairments in decision-making performance when healthy subjects were exposed to CO2 at 0.06% 

(0.46 mm Hg), 0.1% (0.76 mm Hg), and 0.25% (1.9 mm Hg).  Similarly, Sayers et al. (1987) noted 

that operational reasoning was significantly slower after acute exposure (20 min duration) to 

increased levels of CO2 (at 4.5, 5.5, 6.5, or 7.5%); no impairments of short-term memory were 

seen, although increased irritability and discomfort were noted. 
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Environmental exposure to low levels of elevated CO2 (at 550 ppm, 945 ppm, and 1400 ppm; low-

chronic exposure level category) during the course of a full workday was found to impair 

performance on higher-order decision-making tasks, with higher levels of CO2 related to greater 

decline in cognitive functioning (Allen et al., 2015); the exposure-response relationship between 

CO2 level and cognitive performance in this study was found to be approximately linear across the 

experimental concentrations administered. 

Fothergill et al. (1991) assessed cognitive and psychomotor performance at varying CO2 

concentrations at 1 and 6 atmospheres absolute (within the medium-acute exposure level category).  

Tasks used included a modified Stroop test, an arithmetic test, a number comparison task, and a 

figure-copying test.  High CO2 tension was found to significantly impair cognitive and 

psychomotor performance at both atmospheric levels. 

Harter (1967), in an exploration of the potential effects of acute CO2 exposure (5 min) on reaction 

time, found that reaction time decreased in the initial minutes of exposure; over time, however, 

reaction time increased with exposure time.  Furthermore, reaction time impairment was found to 

be significantly greater for exposure to 7.9% CO2 than for exposure to 0% to 5.5%.  This study, 

however, found a high degree of individual variability in subject sensitivity to CO2 effects, pointing 

to the importance of considering individual differences in response to CO2 exposure. 

Findings from a study conducted by the Environmental Protection Agency (EPA) in 2000 suggest 

that poor indoor air quality and higher levels of air pollutants may impair cognitive performance on 

mental tasks requiring concentration, calculation, or memory.  In their examination of indoor air 

quality and student academic achievement, Bakó-Biró et al. (2012) demonstrated a decrease in 

cognitive task performance after exposure to elevated levels of ambient CO2 (at the low-chronic 

exposure level category). 

On the other hand, several investigations have contradicted these observations entirely, finding no 

consistent relationships between CO2 exposure and either cognitive or motor functioning, in terms 

of speed, accuracy, or throughput (Bloch-Salisbury et al., 2000; Caretti, 1999; Frey et al., 1998; 

Garner et al., 2011; Henning et al., 1990; Selkirk et al., 2010; Sheehy et al., 1982; Vercruyssen, 

1984; Vercruyssen et al., 2007). 

In one study, while exposure to increased CO2 predictably resulted in higher incidence of sore 

throats, nasal congestion, headaches, heightened pulse and breathing rate, and difficulty breathing, 

among other symptoms of physiological stress, no significant effects were seen on visual, auditory, 

or motor coordination performance (Consolazio & Fisher, 1947).  In another investigation, 

intermittent exposure to 3% CO2 across 6 days resulted in no significant changes in vigilance, eye-

hand coordination, or problem-solving abilities (Weybrew, 1970). 

In a 2-week bed rest study simulating CO2 exposure (at about 5% concentration) in weightlessness, 

no detrimental effects were observed from bed rest or CO2 exposure, either alone or in 
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combination, on complex tracking performance, hand-eye coordination, or problem-solving ability 

(Storm & Giannetta, 1974). 

Bennett and colleagues (1985) assessed cognitive performance during arithmetic and reaction-time 

tasks in 14 male subjects during submarine confinement; no CO2-related findings emerged.  End-

tidal CO2 from a sample of Navy divers was correlated with cognitive performance (in terms of 

reaction time, visual scanning, visiospatial processing, and learning); no dose-related effects of 

CO2 were observed (Selkirk et al., 2010). 

EFFECTS ON SLEEP AND WAKEFULNESS 

Animal model studies have indicated an increase in sleep onset latency and a decrease in sleep 

duration in rats exposed to 6% to 8% CO2 for 2-3 hours, but no change in the percentage of sleep 

time spent in rapid eye movement (REM) sleep (Ioffe et al., 1984). Exposure to elevated CO2 

resulted in no sleep phase delay in hamsters (Jarsky & Stephenson, 2000).  The effects of 

modulated CO2 levels on sleep disruptions at high altitudes were also investigated using cats; only 

a decrease of CO2 levels below the normal concentration resulted in a detectable sleep effect, a 

lowered rate of REM (Lovering et al., 2003).  Another cat study revealed that CO2 exposure at 6% 

resulted in a worsening of sleep parameters: the duration of wakefulness increased by 24.2%, while 

REM and non-REM (NREM) sleep decreased in both duration and frequency (Fraigne et al., 

2008); however exposure to 2% inspired CO2 increased sleep duration and decreased wake time. 

In humans, mild trends have been found in CO2 impact on sleep and arousal, with CO2 causing 

arousal from sleep (Ayas et al., 2000; Berry et al., 1993; Berthon-Jones & Sullivan, 1984) and 

increased alertness, orienting, and autonomic response (Garner et al., 2012); all these studies 

exposed participants to CO2 levels in the “medium” designation range. 

Increased levels of ambient CO2 were not found to have a negative impact on general sleep quality. 

Sleep architecture, however, was somewhat altered: the amount of slow-wave sleep increased with 

the duration of CO2 exposure (Frey, 1998; Gundel et al., 1998a; both studies were conducted in the 

low exposure category). 

A study examining prolonged exposure (across 24 days) to increased CO2 levels (in the low 

exposure category) via ambient environment found no significant sleep disruptions and no 

impairment of circadian functioning (Samel et al., 1998).  In a series of studies conducted in a 

deep-diving chamber to investigate the effects of increased CO2 on metabolism, cardiorespiratory 

function, sleep, and circadian rhythms, physiological findings were consistent with typical somatic 

responses of headaches, increased vasodilation, and increased heart rate (Frey et al., 1998).  Sleep 

quality was not significantly affected by ambient CO2 levels, although participants did report 

decreased alertness; however, accurate interpretation of these findings is limited by the small 

sample size (n=4).  Exposure levels of CO2 approximated those experienced on the ISS. 
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DISCUSSION 

This assessment of existing research into the psychomotor, cognitive, and sleep effects of elevated 

CO2 exposure revealed conflicting, often contradictory findings.  The majority of studies 

demonstrated no significant cognitive effects, although some results suggest mild impairments of 

psychomotor coordination, memory, and concentration.  Additionally, some findings demonstrated 

no sleep impairments, while others showed disruptions of circadian functioning, hypervigilance, or 

changes in sleep architecture. 

When taken together, the studies surveyed in this paper offered comprehensive assessments of 

cognitive functioning, including tasks of arithmetic, memory, pattern recognition, match-to-sample, 

logical reasoning, visual search, reaction time, and alertness.  Of the 28 articles related to cognitive 

and/or motor functioning that were examined, 5 indicated impaired higher-order cognitive 

performance (including reasoning, memory, pattern recognition, and decision-making), while 6 

demonstrated impairments of visiomotor coordination; 14 revealed no significant cognitive or 

psychomotor impact.  Of the 11 articles that demonstrated statistically significant impacts of CO2 

exposure on cognition or motor functioning, 7 were in the “low” exposure designation category 

and therefore had greatest relevance to the operational conditions aboard the ISS.  Of these 7 

studies, 3 examined acute exposure and the other 4 chronic exposure; both of these categories of 

exposure duration are important for consideration in spaceflight, as astronauts may at various 

points experience elevated CO2 levels either for a short duration or over a long period, and often 

repeatedly. 

Of the 12 sleep-related articles, 3 indicated that arousal from sleep occurs during high CO2 

exposure, 2 pointed to lowered duration of REM, and 2 demonstrated no impact of elevated CO2 

levels on sleep or circadian functioning.  Only 3 of the studies showing an effect on sleep, 

however, were in the operationally relevant “low” exposure range; all 3 of these studies examined 

effects of chronic (that is, prolonged and/or repeated) exposure to elevated CO2. 

The inconsistency in the literature regarding the cognitive and neuropsychological impacts of 

increased carbon dioxide exposure may be attributable in part to the wide variability in CO2 

exposure concentrations assessed, ranging from <1% in some studies to up to 35% in others.  

Additionally, the studies presented here employed a range of gas administration techniques.  For 

example, Caretti (1999) induced heightened CO2 exposure through a rebreather apparatus worn 

over the face, through which concentrations were manipulated directly, while Bakó-Biró (2012) 

monitored effects related to naturally fluctuating ambient levels of CO2 over time within a confined 

indoor space.  Furthermore, not all of these methods ensured consistent or controlled 

administration of CO2 at particular concentrations for all participants. 

At the same time, other factors inherent to this research limit the interpretability of cognitive effect 

findings; for instance, it is difficult to decouple the cognitive indications from purely physiological 

effects, since impairments in performance and decision-making may arise as secondary effects 

related to physiological experiences of headache and somatic stress. 
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CONCLUSION 

While many studies have thus far addressed the impact of CO2 concentration on cognition, the 

inconsistent and contradictory nature of current findings limits the ability to draw firm conclusions 

about the impact of elevated CO2 exposure on sleep, cognition, and psychomotor performance.  

Further research, therefore, remains necessary to provide a clearer understanding of the risks of 

adverse cognitive and performance effects of acute and chronic high CO2, particularly at levels 

relevant to human spaceflight. 

Additionally, this survey highlights the fact that the majority of existing studies focus solely on the 

physiological mechanisms (e.g., headaches, heightened heart rate) by which increased CO2 

exposure may impact cognition, but fail to consider the possibility that observed performance 

changes may in fact be attributable to changes in brain or muscle pO2, which covaries with pCO2 in 

a way that may not be consistent across trials and individuals.  A thorough examination, therefore, 

of the fluctuation of pO2 as inspired CO2 is manipulated remains critical if the impacts of elevated 

CO2 exposure are to be decoupled from other physiological changes. 

At the same time, this review demonstrated that limited research has, in fact, been done under 

environmental conditions analogous to those in operational spaceflight (that is, 0.3% to 0.7% 

ambient CO2 exposure).  Future investigations exploring more modest increases in CO2 

concentration during ambient exposure and incorporating manipulations such as head-down tilt (to 

induce fluid shifts associated with microgravity) or prolonged confinement could, therefore, greatly 

contribute to the establishment of appropriate operational limits and the development of 

countermeasure procedures for use in human spaceflight, and so are very much recommended 

given the findings of this survey. 
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