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1 Introduction to the Problem 

1.1 Purpose of the Document 

 This document is a product of a research project initiated in February 1999 by the X-
38 Flight Controls Branch at the NASA Johnson Space Center (JSC).  Funded by NASA Grant 
NAG9-1085, the effort was associated with the Flight Mechanics Laboratory (FML) of the Texas 
Engineering Experiment Station – the research arm of the Dwight Look College of Engineering 
at Texas A&M University (TAMU).  One of the tasks of the unsolicited proposal that led to this 
grant was to provide a set of design guidelines that could be used in future by JSC.  The subject 
of these guidelines was to be a flight control design for vehicles operating across a broad flight 
regime and with highly nonlinear physical descriptions of motion.  The guidelines specifically 
were to address the need for reentry vehicles that could operate, as the X-38 does, through reentry 
from space to controlled touchdown on the Earth’s surface.  The latter part of controlled descent 
was to be achieved by parachute or paraglider – or by an automatic or a human-controlled land-
ing similar to that of the space shuttle Orbiter. 
 Since these guidelines address the specific needs of human-carrying (but not necessarily 
piloted) reentry vehicles, they deal with highly nonlinear equations of motion, and their generated 
control systems must be robust across a very wide range of physics.  Thus, this first-generation 
document deals almost exclusively with some form of dynamic inversion (DI), a technique that 
has been widely studied and applied within the past 25 to 30 years.  Comprehensive and rigorous 
proofs now exist for transforming a nonlinear system into an equivalent linear system.  (Called 
either feedback linearization or DI, it is based on the early papers of Krener and Brockett1,2.)  At 
about the same time, theoretical advances essentially completed the background for ensuring the 
feedback control laws that make prescribed outputs independent of important classes of inputs; 
namely, disturbances and decoupled control effectors.  These two vital aspects of control theory – 
noninteracting control laws and the transformation of nonlinear systems into equivalent linear 
systems – are embodied in what is often called DI.  Falb and Wolovich3 considered noninterac-
tions as a facet of linear systems theory.  Singh, Rugh, Freund, and Porter4,5,6 extended these 
notions into nonlinear systems.  Isidori and his colleagues7,8 contributed significantly to DI 
theory by using mathematical notions from differential geometry.  Balas and his colleagues 
applied these ideas to a variety of aerospace flight control system designs – including the F-18 
high angle-of-attack research vehicle (HARV)9 as well as to the X-3810 itself.  They also pro-
vided powerful, commercially available software tools11 that are widely used by control design 
practitioners.  Though there is no doubt that the mathematical tools and underlying theory are 
available to industry and government agencies, there are open issues as to the practicality of 
using DI as the only (or even the primary) design approach for reentry vehicles.  Our purpose, 
therefore, is to provide a set of guidelines that can be used to determine the practical useful-
ness of the technique. 
 
 This document will answer the following questions related to four main topics: 
 

1. If we use DI as our primary design method, what tools are available to implement the 
design tasks? 
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2. How easy is it to obtain and to learn to use these tools?  Can an entry-level (an 
undergraduate) engineer be expected to be familiar enough with the tools to be 
productive without receiving specialized training and consulting help? 

3. Is it easy to convey the value of using DI?  How does a design group communicate the 
validation of systems modeled with this modern control technique? 

4. What form of robustness analysis is appropriate?  Is more than one technique worth 
considering? 

 
 Section 2 of this report addresses the first question by first summarizing the value of 
three tools used by TAMU FML engineers – MACH [Mutli-Application Control], MATLAB, 
and batch simulations.  This section goes on to investigate and explore the available forms of 
robustness analysis (question 4) as the forms relate to practical uncertainties and disturbances.  
Section 2 concludes with first thoughts on how we would go about evaluating the various tools. 
 Section 3 addresses how DI is achieved from the perspective of new graduate students 
who has to teach themselves these techniques.  It is hoped that later studies will expand and 
extend this validation process to show that less-sophisticated talent can also successfully 
complete workable designs. 
 Section 4 illustrates the simulation component buildup surrounding DI, and it applies 
DI to the X-38 reentry vehicle model in three separate examples.  The first tests a DI controller 
against a nonlinear MATLAB simulation to evaluate performance; the second and third present 
longitudinal and lateral/directional DI controller designs, respectively. 
 Section 5 describes two different controller analysis techniques and analyzes DI con-
trollers using both methods.  The controller analysis techniques addressed in this section include 
µ-analysis and linear quadratic performance index analysis. 
 Section 6 provides a summary of the theoretical background needed to understand 
some of the DI design procedures and to complete at least elementary robustness analyses of the 
DI system. 
 Finally, Section 7 is a fairly extensive list of references used to prepare this report.  
Although the bibliography is not comprehensive, it does include much of the classical work that 
has been done to this point. 
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2 Synthesis Procedure 
 Synthesis is the process by which the components or elements of a system are brought 
together by a designer to accomplish the tasks under consideration.  The trick is to be sure that 
the individual parts are integrated in such a way that the sum of the parts produces an outcome 
greater than the individual contributions of the parts.  This “synergy” is a result of an integrated 
design.  Integration begins with the process used, and depends strongly on the tools available. 
 In this first iteration of our design guidelines, we will consider three sets of software 
tools; i.e., MACH, MATLAB, and batch simulations.  MATLAB is a widely used commercial 
software package for control system design that has both a command line and a graphical user 
interface.  It is also relatively easy to use, and many colleges and universities teach undergraduate 
courses that integrate MATLAB-based problems into their pedagogy.  Moreover, MATLAB has 
a number of specialized toolkits that directly address matrix algebra and modern control system 
design, including DI and techniques often used to analyze the robustness of such designs.  This 
set of tools is quite extensively documented; indeed, MATLAB has steadily evolved and been 
improved over several years of commercial usage. 
 MACH is a set of proprietary software tools developed and used (but not sold com-
mercially) by Honeywell that directly address some of issues common to DI.  One of the key 
questions we want to answer in this report is:  Is it feasible for a relative beginner to build up DI 
models without using tools such as MACH?  Or, is MACH indispensable to the efficient genera-
tion of DI modules? 
 Finally batch simulation, which can be done (at least partially) within MATLAB’s 
Simulink module, is a software tool that requires some attention.  It is doubtful that a control 
system designer today would attempt to produce a flight-worthy system without first generating 
at least a mathematical model of the specific system under consideration.  We used the shuttle 
engineering simulator (SES) as the basis for our batch simulation buildup.  As is almost always 
the case, keeping the simulation current as the vehicle (in this case, the X-38) design evolves is 
a recurring headache.  As new data become available, the simulation has to be updated.  Lesson 
Learned 1: Set up a procedure early in the process for updating and formatting aerodynamic 
(and other) databases.  A corollary to this is that time and resources must be devoted to main-
taining these databases or all facets of the program will suffer.  Flight control design cannot 
proceed efficiently without this effort. 

2.1 Tools 

2.1.1 MATLAB 
 As mentioned earlier, MATLAB is one of the most widely used commercial software 
packages available for control system design.  So, it and its companion product, Simulink, are 
used extensively in this study.  The DI controllers are developed in MATLAB, and simulations 
are run within the Simulink environment.  This simulation development process and its results 
are at the core of this study.  Detailed linear robustness analyses of the example controller for 
the X-38 are also made easier by MATLAB.  Two different MATLAB toolboxes will facilitate 
µ-analysis:  the (1) Robust Control Toolbox and (2) µ-Synthesis and Analysis Toolbox.  Obvi-
ously, the latter is intended for µ-analysis since it is dedicated to that process.  Hence, a number 
of useful functions are readily available and packaged with a detailed instruction manual.  A 
detailed discussion of the underlying theory of µ-analysis is given in Section 5.1. 
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2.1.2 Multi-Application Control 
 One of the spacecraft controllers using the DI approach is based on MACH.  MACH is 
a proprietary software package developed by Honeywell that was previously applied to several 
flight control designs such as the F-18 HARV and the X-29 aircraft.  Its basic structure consists 
of an inner-loop DI controller wrapped around an outer-loop classical proportional integral (PI) 
controller.  Figure 2.1 below shows the similarity between the MACH system structure and the 
controller used in the first example (see Section 4.6).  Although slight differences exist, these 
are associated primarily with different definitions for the control variables (CVs). 

 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 2.1  Typical MACH system structure 
 
 
 Since MACH is proprietary to Honeywell, implementation details cannot be presented in 
a document of unlimited distribution such as these guidelines.  Details are sketchy in any event; 
and other than a comprehensive outline of the MACH structure, the code is not used broadly as 
a design tool in this version of our guidelines.  Later implementations may include more on the 
MACH software if it becomes obvious that the code is useful to the overall design process.  For 
purposes of this document, we will therefore focus on demonstrating that DI can be successively 
implemented with other tools and procedures with only a moderately intense learning effort on 
the part of the analyst.  A brief comparison of a MACH controller and a Simulink example are 
presented in Section 4.4.  This comparison primarily highlights the differences. 

2.1.3 Batch Simulation  
 The batch mode of SES X-38-V201 version 1.3 is used in this study.  This version 
contains the shuttle-derived classical controller designed at JSC by John Ruppert.  Although 
different versions of MACH have already been implemented for the X-38-V132; this is the only 
version already implemented that uses the V201 database prior to release of the MACH control-
ler in late 1999.  This SES version was thus our only available choice since the scope of our 
study was to examine the characteristics of a DI controller throughout the entire X-38 flight 
envelope (i.e., from hypersonic through subsonic flight regimes of anticipated trajectories). 

 LCV  MCV  NCV

φ command 

α command 

actuator 
command 

Desired 
Dynamics 

Dynamic 
Inversion 

and  
Effector 

Allocation 

Controlled 
Variable 

Definition 

Sensor  
Processing 

 LCVcmd 

 MCVcmd 

 NCVcmd 

sensors 

  LCVdes

  MCVdes

  NCVdes

• 

• 

• 

O
ut

er
 L

oo
ps

 



 

  
5

 By using batch implementation, a nominal case is executed to obtain essential vehicle 
properties (aerodynamic coefficients, moment/product of inertia, etc.).  The data thus obtained 
are then incorporated into the Simulink-based DI controllers.  A few attempts are also included 
in which we began examining uncertainty in the mass properties of the X-38 by varying these 
parameters slightly (Section 4.6).  However, time constraints as well as the complexity of the 
SES batch simulation limited the number we performed of these runs. 

2.2 Specifications 

 The controller design procedure is normally iterative and centers around designing a 
controller that satisfies a set of design specifications.  These specifications can be provided in the 
time domain, the frequency domain, or both.  It is important to note that the type of input (i.e., 
impulse, step, ramp, sinusoid) must be specified.  Examples of these are introduced and dis-
cussed below. 

2.2.1 Time Domain 
 Time domain inputs, such as a step input, can be used to evaluate system characteristics 
such as damping, natural frequency, overshoot, etc.  Initial condition or impulse excitations are 
particularly useful in evaluating the damping of rate variables.  Such time domain controller 
responses can be evaluated through simulation in the Simulink environment, for example. 

2.2.2 Frequency Domain 
 The response of a linear system to a sinusoidal input is referred to as the system’s 
frequency response.  Frequency domain specifications are concerned with the response of a 
system to frequency varying inputs, most often of the sinusoidal type.  Typical specifications are 
gain margin, phase margin, and bandwidth.  Gain margin is the amount by which system gain can 
increase before the system becomes neutrally stable.  Phase margin is the amount by which phase 
lag can increase before the system becomes neutrally stable.  Bandwidth – defined as the maxi-
mum frequency at which system output will satisfactorily track a sinusoid input – is basically 
a frequency domain measure of response speed.  It is therefore akin to the time-domain specifi-
cation of rise time.  Frequency domain specifications are important to multiple-input, multiple-
output (MIMO) robust controller design since most available methods are based in the frequency 
domain and thus use some or all of the frequency domain specifications. 

2.3 Uncertainty Modeling 

 Actual controllers are expected to perform well for an entire class of transfer functions 
representing the range of plant dynamics and operating environment.  Since it is impossible to 
analytically or empirically model with 100% accuracy a dynamic system and the effects of its 
operating environment, uncertainty modeling plays an important role in controller design and 
analysis.  But even when applying optimal control techniques, the resulting controller designs 
will not be truly “optimal” because 

• operating environments can introduce undesirable/unknown performance. 
• the system is inherently nonlinear (EXAMPLE: Coulomb friction, hysteresis, backlash, 

and deadbands). 
• physical components are subject to wear and failure. 
• there are limitations to implementation (EXAMPLE: computational delays). 
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Uncertainties are broadly classified in two categories – structured and unstructured – both 
of which are usually present in any given physical system.  The key to successful uncertainty 
modeling (and, thus, to robust controller design) is to recognize to which category a particular 
type of uncertainty belongs and then to determine the characteristics of that uncertainty.  Further, 
the majority of robust control techniques require uncertainty be modeled entirely in the frequency 
domain.  These topics are outlined in the following sections. 

2.3.1 Structured 
 Structured uncertainties can be modeled and have relatively well-known bounds and 
ranges.  Parametric uncertainties arise from and include 

• control effectiveness, 
• aerodynamics, 
• mass, and 
• inertia. 

 

 
Parametric uncertainties are important; but since by definition they can be understood and 
modeled, they can usually be analyzed and handled.  Nonparametric uncertainties are potentially 
more dangerous because they are not as well understood and are difficult or impossible to model 
accurately.  However, those that can be represented as some type of stochastic process can be 
easily incorporated into the design model.  The key issue is to determine the relative magnitude 
of nonparametric uncertainties.  In general, small nonparametric uncertainties cause small errors 
while large nonparametric uncertainties cause large errors.  It is also important to determine 
how quickly nonparametric uncertainties vary. 

2.3.2 Unstructured 
 Unstructured uncertainties are those for which generally little to no knowledge is 
possessed.  They are usually not modeling-related nor can they be modeled at all.  Nonparametric 
unstructured uncertainties include 

• high-frequency unmodeled dynamics, 
• actuator dynamics, 
• structural vibrations, 
• measurement noise, 
• round-off error and truncation, and 
• sampling delay. 

 Since retention of full, nonlinear dynamics severely restricts the number of synthesis 
techniques presently available, linearization of actually nonlinear dynamics is often required.  
So, approximations are inherent and introduce uncertainty.  Actuators also fall into this category 
for the same reason.  Uncertainty due to structural vibrations and measurement noise can be 
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represented with a certain degree of accuracy when experimental data is available.  In the absence 
of experimental data or when a simpler representation is wanted, measurement noise is often 
approximated as a sine wave.  Round-off error and truncation are extremely difficult means 
of representing uncertainties.  No widely accepted standard method exists for them. 

2.3.3 Frequency Domain 
 Classical Control addresses the issue of uncertainty by assuming that all types of un-
certainties in the system cause only gain changes, or phase changes, to occur.  Robust Modern 
Control takes a frequency domain approach using transfer functions in the S-domain such that 
certain types of modeling errors are assumed to have certain frequency effects.  Since parametric 
modeling errors are structured uncertainties with known bounds, they are assumed to cause low-
frequency effects.  Consequently, neglected and possibly higher-order dynamics are assumed to 
cause high-frequency effects.  Unstructured uncertainties, which are not well understood, repre-
sent systems in the frequency domain whose frequencies simply are assumed to lie between some 
upper and lower bound.  Additive uncertainty is used to model errors in neglected high-frequency 
dynamics; this represents the absolute error in the model.  Multiplicative uncertainty, which is 
used to model errors in actuators or sensor dynamics, represents the relative error in a model.  
This latter type of uncertainty is most useful in robustness analysis and design. 

2.4 Disturbances 

 Disturbance rejection properties to exogenous disturbances – e.g., gusts, turbulence, 
wind shear – are particularly critical in flight control system design.  By definition, an exogenous 
input is one that a controller cannot manipulate.  These unstructured uncertainties are stochastic 
processes and, as such, are best represented as stochastic models in terms of mean and variance.  
The standard gust and turbulence models, due to Von Karman and Dryden, are empirically 
based and directly applicable to both controller design and controller analysis. 

2.5 Dynamic Inversion Synthesis 

 DI synthesis is a controller synthesis technique by which existing deficient, or undesi-
rable, dynamics are canceled out and replaced by desirable dynamics.  Cancellation and replace-
ment are achieved through careful algebraic selection of the feedback function.  For this reason, 
this methodology is also called feedback linearization.  It applies to both single-input, single-
output (SISO) and MIMO systems, provided the control effectiveness function (in the SISO case) 
or the control influence matrix (in the MIMO case) is invertible.  The method works for both 
full-state feedback (input-state feedback linearization) and output feedback (input-output feed-
back linearization).  A fundamental assumption in this methodology is that plant dynamics are 
perfectly modeled and can be canceled exactly.  In practice this assumption is not realistic, so 
the new dynamics require some form of robust controller (see Section 2.6.1) to suppress unde-
sired behavior due to plant uncertainties.  Examples of DI synthesis are shown in Chapter 3. 

2.6 Robustness 

 Compensators are designed to satisfy specified requirements for steady-state error, 
transient response, stability margins, or closed-loop pole locations.  Meeting all objectives 
is usually difficult because of the various tradeoffs that have to be made and because of the 
limitations of design techniques.  For example, although classical root locus design places a pair 
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of complex conjugate poles to meet transient response specifications, the designer has little 
control over the location of all other poles and zeros.  The particular property that a control 
system must have to operate properly in realistic situations is called robustness.  A control 
system that possesses both good disturbance rejection and low sensitivity is said to be robust.  
Disturbance rejection is the ability to maintain good regulation (tracking) in the presence of 
disturbance signals.  Low sensitivity is the ability to maintain good regulation (tracking) in 
the presence of changes in plant parameters.  Mathematically, this means that a controller 
must operate satisfactorily for not just one plant but for a family or a set of plants. 
 Robustness is divided into two distinct yet related categories:  stability robustness and 
performance robustness.  Stability robustness is the ability to guarantee closed-loop stability in 
spite of parameter variations and high-frequency unmodeled dynamics.  It is important to note 
that relative stability, not absolute stability, is of interest in this context.  Performance robustness 
is the ability to guarantee acceptable performance (settling time, overshoot, etc.) even although 
the system may be subject to disturbances.  The Classical Control method quantifies robustness 
through gain margin and phase margin.  Modern Control techniques use the structured singular 
value analysis of Section 6.2.3 to quantify robustness.  In the MIMO case, both the maximum 
and the minimum singular values are measures of the amplification and attenuation, respectively, 
of the transfer function matrices that represent the family or set of plants of a system.  Section 5.1 
presents this robustness technique and demonstrates how to perform the analysis and interpret 
the results. 

2.6.1 µ-Synthesis and H∞ 
 Structured singular value synthesis, or µ-synthesis, is a multivariable design method 
that can be used to directly optimize robust performance.  It involves both µ-analysis and H∞ 
synthesis.  Performance specifications are weighted transfer functions describing the magnitude 
and frequency content of control inputs, exogenous inputs, sensor noise, tracking errors, actuator 
activity, and flying qualities.  A family of models (consisting of a nominal model plus structured 
perturbation models) is used with magnitude bounds and frequency content specified using 
weighted transfer functions.  All of this is wrapped into a single standard interconnection 
structure that is then operated upon by the algorithm. 
 The H∞ control controller design methodology is a frequency domain optimization for 
robust control systems.  H∞ is defined as the space of proper and stable transfer functions – i.e., 
transfer functions with a number of zeros less than or equal to the number of poles.  The objec-
tive is to minimize the H∞ norm.  Physically, this corresponds to minimizing the peak value in 
the Bode magnitude plot of the transfer function in the SISO case or the singular value plot in 
the MIMO case.  There are certain advantages in minimizing the infinity-norm.  These are 

• The infinity-norm is the energy gain of the system.  By comparison, the Linear 
Quadratic Gaussian (LQG) technique minimizes the 2-norm, which is not a gain. 

• The infinity-norm minimizes the worst-case root mean square (RMS) value of 
the regulated variables when the disturbances have unknown spectra.  The 2-norm 
minimizes the RMS values of the regulated variables when the disturbances are unit-
intensity, white noise processes. 

• H∞ control results is guaranteed stability margins (and is therefore robust), whereas 
LQG has no guaranteed margins. 

As in the Linear Quadratic Regulator (LQR)/LQG methodology, H∞ is iterative.  In the standard 
problem, the solution for the infinity-norm is iterated upon until it is less than a specified scalar 
value, gamma – known as the gamma iteration.  In the optimal problem, the infinity-norm is 
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progressively reduced until a solution does not exist.  In the H∞ control problem, the weights are 
the only design parameters the user must specify.  Constant weights are used for scaling inputs 
and outputs.  Transfer function weights are used to shape the various measures of performance 
in the frequency domain; weights are also used to satisfy the rank conditions.  Proper selection 
of weights depends a great deal on understanding both the modeling process and the physics 
of the problem. 
 Necessary conditions for a solution are the ability to stabilize and detect the system; to 
perform various rank requirements on system matrices; and to ensure that the transfer function 
between exogenous system inputs and the outputs remains nonzero at high frequencies.  This last 
condition, which is often violated, occurs because the transfer function is strictly proper; i.e., has 
more poles than zeros.  Solutions to H∞ and LQG problems are very similar.  Both use a state 
estimator and feed back the estimated states, and both solve two Ricatti equations to compute 
controller and estimator gains.  The difference in the solutions lies in the coefficients of the 
Ricatti equation and in an extra term in the H∞ solution.  Examples of this methodology are 
presented in Chapter 5. 

2.7 Validation 

 Validation – which consists of an attempt to match outputs between two different 
control and simulation software packages for the same control inputs, and for the same controller 
structure and gains – was performed on all examples in this document to ensure as much fidelity 
as reasonably possible.  The degree of fidelity depends on the purpose of the example, the soft-
ware tool used to synthesize and simulate the example, the operating system and language, and 
the platform on which the example was being run. 

2.7.1 MATLAB versus MACH 
 MATLAB and MACH have similar structures that, in theory, should permit good 
validation.  MATLAB was run on a personal computer (PC) and MACH was run on a UNIX-
based workstation.  The difficulty involved with this validation effort stemmed from a lack of 
understanding of the MACH code itself due to a lack of documentation.  Although agreement 
between the two codes was generally good, it was inadequate for in-depth investigations and 
research. 

2.7.2 MATLAB versus Batch Simulation 
 MATLAB was run on a PC, and the SES batch simulation was run on a Silicon Graphics 
Incorporated (SGI) UNIX workstation.  Because of adequate documentation and open access to 
the SES source code, validation between these two codes proceeded rapidly and with excellent 
agreement.  These two software codes form the basis for all of the controller design research 
presented in this document. 
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3 Applying Dynamic Inversion 

3.1 Introduction and Philosophical Approach 

 This section shows how DI is applied to a relatively simple aircraft control problem.  
As will be explained in more detail in Section 4, since the concept of DI itself is quite simple, 
a controller can be designed in many different ways.  For example, the controller might be either 
linear or nonlinear.  Also, a DI controller is not limited to a first-order inversion.  It can take on 
higher-order forms as well.  This chapter describes one way of designing a DI-based controller.  
The steps taken in completing this design are carefully delineated in the hope that a step-by-
step outline will help others design DI-based controllers. 
 First, a brief outline of the DI process will be given to quickly review the concept, 
followed by a detailed description of how to design each controller component.  Then, aircraft 
equations of motion are introduced, and the DI design process is applied to a particular reentry 
vehicle; i.e., the X-38.  Finally, several forms of desired dynamics are presented for this DI 
application. 

3.2 Dynamic Inversion Concept (Linear Aircraft Controller) 

 As we suggested previously, the basic concept of DI is quite simple.  In general, aircraft 
dynamics are expressed by 

 
( )
( )

=

=

& ,x F x u

y H x
 (3.1) 

where x is the state vector, u is the control vector, and y is the output vector.  For conventional 
uses (where small perturbations form trim conditions), the function F is linear in u. Equation 
(3.1) can be rewritten as 

 ( ) ( )= +&x f x g x u  (3.2) 

where f is a nonlinear state dynamic function and g is a nonlinear control distribution function.  
If we assume g(x) is invertible for all values of x, the control law is obtained by subtracting f(x) 
from both sides of Equation (3.2) before multiplying both sides by g–1(x). 

 ( ) ( )− ⎡ ⎤= −⎣ ⎦&1u g x x f x  (3.3) 

 The next step is to command the aircraft to specified states.  Instead of specifying the 
desired states directly, we will specify the rate of the desired states, &x .  By swapping &x  in the 
previous equation to &desx , we get the final form of a DI control law. 

 ( ) ( )− ⎡ ⎤= −⎣ ⎦&1
desu g x x f x  (3.4) 

Figure 3.1 shows a block diagram representation of the DI process. 
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Figure 3.1  Dynamic inversion process 
 
 
 Although the basic DI process is simple, a few points need to be emphasized.  First, 
although we assume g(x) is invertible for all values of x, this assumption is not always true.  For 
example, g(x) is not generally invertible if there are more states than controls.  Furthermore, even 
if g(x) is invertible (i.e., g(x) is small), the control inputs, u, become large; and this growth is a 
concern because of actuator saturation.  Since the dynamics of the actuators, as well as sensor 
noise in the feedback loop, are neglected during this primitive controller development to 
illustrate the process, a “perfect” inversion is not possible. 
 DI is also essentially a special case of model-following.  While it is similar to other 
model-following controllers, a DI controller requires exact knowledge of model dynamics to 
achieve good performance.  Robustness issues therefore play a significant role during the design 
process.  (This issue is discussed in detail in Chapter 5.)  To overcome these difficulties, a DI 
controller is normally used as an inner-loop controller in combination with an outer-loop 
controller designed using other control design techniques. 
 The closed-loop transfer function for a desired CV that is being inverted is found 
according to Figure 3.2.  From this block diagram, we can observe that the desired dynamics 
operate on the error between the commanded CV and its feedback term.  In this figure, the pure 
integrator on the right side is used to approximate the rest of the system dynamics, as shown on 
the right side of the block diagram12.  The CV here corresponds to the state x in the previous 
development as well as in Figure 3.1. 
 
 
 

 

 
 

Figure 3.2  Block diagram to calculate closed-loop transfer function 
 
 

3.2.1 Simplified Longitudinal Controller for an Aircraft  
 A simplified form of the linear longitudinal equation for an aircraft’s pitch axis considers 
only the pitching moment equation. 

 α δα δ= + +&
q eq M M q M e  (3.5) 

( ) ( )− ⎡ ⎤−⎣ ⎦&1
desg x x f x ( )xH1

s
 ( ) ( )+f x g x u

x 
 . x y 
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The correspondence of this equation to Equation (3.2) is clearly seen in the following mappings: 

α

δ

⇒
⇒ δ

⇒ α +

⇒
e

e

q

x q
u
f M M q
g M

 

Since Mδe is a constant for a linear time invariant system, the inverse of the control distribution 
function, g, is always obtained as a constant, 1/Mδe. 
 Now, we need to invert this equation for the elevator deflection angle.  Mapping is 
achieved by substituting the relationships shown in the correspondence mappings (above) into 
Equation (3.3), giving the following equation: 

 α
δ

⎡ ⎤δ = − α −⎣ ⎦&1

e

e qq M M q
M

 (3.6) 

To obtain a control law, we specify the desired value of pitch acceleration, &desq .  Then, by 
substituting &desq for &q  in Equation (3.6) and by substituting αmeas and q meas for α and q, we get 
the following longitudinal dynamic inversion control law: 

 α
δ

⎡ ⎤δ = − α −⎣ ⎦&1

e

cmd des meas meas
e qq M M q

M
 (3.7) 

Figure 3.3 shows the block diagram representation of the longitudinal DI controller. 
 
 

 
 

 

Figure 3.3  Longitudinal Dynamic Inversion Control block diagram 
 
 
 Recall that aircraft dynamics are modeled as a simple first-order form (Equation (3.5)) 
to develop this simplified DI control equation.  In this model, both nonlinearity and higher-order 
terms in the actual aircraft dynamics are neglected.  Since this simple DI controller cannot com-
pletely cancel out the aircraft dynamics, controller performance is potentially degraded. 
 Similarly, δ ≠ δcmd

e e  due to actuator dynamics.  This shortcoming, which is also 
neglected while simplifying the control law development, is most noticeable when the control 
surface position and rate exceed their limits – something that occurs often when the value of Mδe 
is too small (in this case, δcmd

e was unbounded). 

δe
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 Finally, α ≠ α ≠;meas measq q  due to sensor processing.  This factor is also neglected in 
the control law development, thereby potentially harming controller performance as well. 

3.2.2 Simplified Lateral Directional Controller for an Aircraft 
 Lateral/directional DI control equations are developed in this section.  Although the 
development procedure is similar to that of the longitudinal case, we need to simultaneously deal 
with two states (roll rate and yaw rate) controlled by two control surfaces (ailerons and rudders) 
instead of with one state (pitch rate) controlled by one control surface (elevator) as in the 
simplified longitudinal case. 
 Simplified linear lateral aircraft equations can be written with respect to roll as well as 
yaw axes as 

 β δ δ

β δ δ

= + + β + δ + δ

= + + β + δ + δ

&

&
p r a r

p r a r

p L p L r L L a L r
r N p N r N N a N r

. (3.8) 

If we write Equation (3.8) in a compact matrix form, we get 

 β δ δ

β δ δ

⎡ ⎤
⎡ ⎤ δ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ δ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎢ ⎥β⎣ ⎦

&

&
p r a r

p r a r

p
L L L L Lp a

r
N N N N Nr r

. (3.9) 

When we compare the matrix form of Equation (3.9) to Equation (3.2), each parameter is either a 
vector or a matrix but the form remains the same. 

 

β

β

δ δ

δ δ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥β⎣ ⎦
δ⎡ ⎤

= ⎢ ⎥δ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

&
&

&

a r

a r

a

r

p r

p r

p
r

p
r

L L L
N N N

L L

N N

x

x

u

f

g

 (3.10) 

Notice here that the control distribution matrix, g, is a square matrix.  Therefore, its inverse 
exists in general. 
 As a next step similar to the longitudinal case, we will invert the roll rate and yaw rate 
dynamic equations to obtain aileron and rudder deflection angles. 



 

  
14

 
−

δ δ β

βδ δ

⎧ ⎫⎡ ⎤⎡ ⎤δ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ ⎪⎢ ⎥= −⎢ ⎥ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥δ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎢ ⎥β⎣ ⎦⎩ ⎭

&

&

1

a r

a r

p ra

p rr

pL L L L Lp
r

N N NN N r
 (3.11) 

Then, substituting the desired states & desp  and &desr  for &p  and &r  along with the measured values 
of p, r, and β (pmeas, rmeas, and βmeas) for p, r, and β, we get the lateral DI control law. 
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Figure 3.4 presents a block diagram representation of the lateral DI controller. 
 
 
 

 
 
 
 
 

Figure 3.4  Lateral Dynamic Inversion Control block diagram 
 
 

3.3 Nonlinear Dynamic Inversion 

 The previous examples illustrate DI control for a linear system.  This approach can be 
readily extended to a system with nonlinear characteristics by starting with the following set of 
nonlinear equations typical for an aircraft. 
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Now, we will assume the longitudinal and lateral-directional moments – L, M, and N – are linear 
with respect to aerodynamic derivatives; i.e., 
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α δ
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By substituting the above linear moment equations into Equation (3.13), we can obtain a relation 
in Equation (3.15) that combines linear and nonlinear terms. 
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If the last term is ignored, the result is identical to the linear set of DI equations previously 
obtained.  Finally, inverting the above equation as well as performing proper substitutions of the 
commanded, desired, and measured values gives the resulting DI control law. 
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3.4 Applying the Dynamic Inversion Controller to  
the X-38 – the Overall Structure 

 The DI control laws developed in the previous sections are now integrated into an overall 
control structure.  As the block diagram in Figure 3.5 shows, DI control is used as an inner loop 
accompanied by α and φ feedback outer loops.  Although any type of control technique can be 
used for the outer loop, simple feedback is used in this particular example to illustrate the 
characteristics of inner-loop DI control. 
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Figure 3.5  Overall Dynamic Inversion Control block diagram 
 

 
 The overall DI controller requires commanded values of angle-of-attack, αcmd, and bank 
angle, φcmd, as inputs.  Then, the measured values of αmeas and φmeas are subtracted from the com-
manded values to produce αerror and φerror in the outer loop.  These error values are then fed into 
the Command Inverter block to be changed to rate commands, pcmd, qcmd, and rcmd.  The Desired 
Dynamics block uses these rate commands and the rate measurements to create the desired accel-
eration terms – favored forms of commands for the DI controller.  The next block is the DI block, 
which produces the control surface deflection angle commands δa

cmd, δr
cmd, and δe

cmd.  Finally, 
the control surface commands are fed into the Plant block, X-38 Model, via the Control Surface 
block.  The Control Surface block includes control surface management logic, which blends the 
three command values, δa

cmd, δr
cmd, and δe

cmd, into two command values, δEL
cmd and δr

cmd, that 
include the dynamics of the actuators as well as the position and rate limits of the actuators.  
Gust and sensor noises are added to the system as external disturbances as well. 

3.4.1 Command Inverter 
 In aircraft applications, sometimes it is better to command displacements in the angle-
of-attack and bank angle rather than command the body axis rates p, q, and r.  However, rate 
commands are needed as inputs to the Desired Dynamics block.  The Command Inverter block 
(Figure 3.6) changes displacement commands into rate commands so that displacement com-
mands are directly implemented in the DI controller.  This section describes how displace-
ment commands are transformed into rate commands. 
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Figure 3.6  Command Inverter block diagram 
 
 

3.4.2 Body Components and Euler Angles Relationship 
 Roll, pitch, and yaw rates are obtained from Euler angular rates using the following 
transformation matrix: 

 
p 1 0 sin
q 0 cos cos sin
r 0 sin cos cos

⎡ ⎤− θ φ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= φ θ φ θ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− φ θ φ ψ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

&

&

 (3.17) 

Now, by substituting the commanded values pcmd, qcmd, and rcmd  for the corresponding p, q, and 
r and by replacing φ& , θ& , and ψ&  with their corresponding commanded values, cmdφ& , cmdθ& , and 

cmd 0ψ =& , the following relationship is obtained: 

 

cmd
cmd

cmd
cmd

cmd

p 1 0
q 0 cos

0 sinr

⎡ ⎤
⎡ ⎤⎢ ⎥ ⎡ ⎤φ⎢ ⎥⎢ ⎥ = φ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥θ⎣ ⎦⎢ ⎥− φ⎣ ⎦⎢ ⎥⎣ ⎦

&

&
 (3.18) 

The next step is to express commanded values of Euler rates in terms of the commanded values 
of the angle-of-attack and bank angles. 

3.4.3 Roll Angular Rate 

 The commanded roll rate, cmdφ& , is obtained from the commanded bank angle, cmdφ , 
simply by differentiating with respect to time. 

 cmd cmdd
dt

φ = φ&  (3.19) 

By substituting the above expression into the first row of Equation (3.17), pcmd is expressed as a 
function of φcmd. 

 cmd cmddp
dt

= φ  (3.20) 
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3.4.4 Pitch Angular Rate 

 Expressing pitch angular rate, cmdθ& , from angle-of-attack is slightly more complicated 
than the roll angular rate case.  First, the Euler pitch angle can be expressed in terms of α (angle-
of-attack), β (sideslip angle), γ (flight path angle), and φ (bank angle) by 

 
2 2 2

1
2 2

ab sin a sin btan
a sin

−
⎛ ⎞+ γ − γ +⎜ ⎟θ =
⎜ ⎟− γ⎝ ⎠

, (3.21) 

where: a cos cos
b sin sin cos sin cos

= α β
= φ β + φ α β  

The commanded value of the Euler pitch rate is calculated by differentiating the commanded 
value of Euler pitch angle by 

 d
dt

θ = θ& . (3.22) 

Substituting this expression for θ&  into the second row of Equation (3.17), qcmd is expressed as a 
function of θcmd. 

 cmd cmddq cos
dt

⎛ ⎞= φ θ⎜ ⎟
⎝ ⎠

 (3.23) 

 

with  
( ) ( )

( )

2 2cmd cmd cmd 2 cmd
cmd 1

2cmd 2

a b sin a sin b
tan

a sin

−

⎛ ⎞
+ γ − γ +⎜ ⎟

⎜ ⎟θ =
⎜ ⎟− γ⎜ ⎟
⎝ ⎠

 

where: 
cmd cmd

cmd cmd cmd cmd
a cos cos
b sin sin cos sin cos

= α β
= φ β + φ α β

 

 

3.4.5 Yaw Angular Rate 
 Instead of defining the corresponding Euler pitch and yaw rate commands to rcmd, we 
simply set rcmd equal to zero. 

 cmdr 0=  (3.24) 
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3.5 Multiple Time Scale Method 

 To bypass a singularity problem in the inversion of an ineffective control matrix, a 
multiple time scale method has been developed that has been found to be quite successful in 
solving the problem.  This approach is especially useful when inverting slow-motion variables, 
such as angle-of-attack, α, in the longitudinal case and sideslip, β, and bank angle, φ, in the 
lateral/directional case.  These variables are deemed as “slow” dynamics because the control 
effectiveness on their dynamics is quite low.  Variables making up the “fast” aircraft dynamics 
include pitch rate, q, in the longitudinal case, roll rate, p, and yaw rate, r, in the lateral/directional 
case.  Since the control effectiveness on these body rates is high, these dynamics are considered 
“fast” dynamics.  The multiple time scale method thus seeks to reformulate the original differ-
ential equation (Equation (3.1)) into a set of two separate differential equations consisting of 
a set of slow dynamics, x& , and a set of fast dynamics, y& . 

 f ( ) g( )= +x x x y&  (3.25) 

 h( , ) k( , )= +y x y x y u&  (3.26) 

Applying this technique to the linear aircraft dynamics, A B= +x x u& , yields the following 
slow dynamic equations for the rate variables (Equation (3.27)) and fast dynamic equations for 
the acceleration variables (Equation (3.28)): 

 
22 23

11 14 12 13

41 44 42 43

A 0 0 0 A 0 p
0 A A A 0 A q
0 A A A 0 A r

α α⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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&
 (3.27) 
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 (3.28) 

where A and B represent the longitudinal state and control input matrix values for the linear 
state-space model, and A  and B  represent the lateral/directional state and control input matrix 
values.  Also, the subscripts denote the row and column value, respectively.  Note that in Equa-
tion (3.27), rate variables form the input for the slow dynamics while the actual control surface 
commands form inputs for the rate dynamics shown in Equation (3.28).  Inverting each set of 
differential equations generates two DI control laws, one for the outer DI loop (Equation 
(3.29)) and one for the inner DI loop (Equation (3.30)). 
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 (3.30) 

A block diagram representation of this 2-time scale approach is shown in Figure 3.7. 
 
 

 

 

 

 
Figure 3.7  Block diagram of the 2-time scale approach 

 
 

In the Fast Inversion block, fast desired dynamics are calculated and the control law in 
Equation (3.30) is implemented.  Fast dynamics are a function of the CV commands, (pcmd, qcmd, 
and rcmd) and their feedback terms (p, q, and r).  Similarly, in the Slow Inversion block slow de-
sired dynamics are calculated and the control law (Equation (3.29)) is implemented.  Again, slow 
dynamics are a function of the CV commands (αcmd, β cmd, and φcmd) and their feedback terms (α, 
β, and φ).  In summary, the Slow Inversion block produces the commanded rate variables of 
Equation (3.29) that are fed to the desired dynamics in the Fast Inversion block.  Using these 
fast desired dynamics, the fast inversion control law of Equation (3.30) produces the commanded 
control deflections that are sent to the control surface actuators, which then serve as input to the 
inherent dynamics. 
 Several observations can be made from these two DI control laws.  First, only the 
short-period aerodynamic terms (A22, A23, A32, and A33) are present in this set of slow and fast 
dynamics.  Further, these two equations combine, retaining all original lateral/directional state 
matrix terms.  It is also important to observe that the control effectiveness of the elevon on angle-
of-attack, B21, is not present in the inversion matrix and has actually been eliminated altogether 
from these two sets of equations.  This is the term that traditionally causes a singularity effect on 
inversion because the value is typically small in magnitude.  Instead, the control effectiveness on 
the pitch rate dynamics, B21, has been retained for inversion in the fast DI control law.  Similarly, 
control input matrix values affecting sideslip and bank angle dynamics have also been eliminated 
(B11, B12, B41, and B42).  Therefore, only the control matrix terms for the rate dynamics have been 
kept (B21, B22, B31, and B32).  This is of benefit because the control surfaces are more effective on 
the rotational rate variables than they are on the rotational variables.  Finally, it is important to 
emphasize the fact that this 2-time scale method requires that the designer specify two sets of 
desired dynamics:  one set for the slow dynamics and one set for the fast dynamics. 
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3.6 Desired Dynamics 

 The Desired Dynamics block, which was introduced during DI control law development, 
is explained in detail in this section. 
 DI control requires acceleration terms.  For example, as the following longitudinal DI 
equation shows, a desired value of pitch angular acceleration, q& , is required: 

 
cmd

e

des meas meas
e q

1 q M M q
M α

δ
⎡ ⎤δ = − α −⎣ ⎦
&  (3.25) 

However, applications normally use either displacements or rates as command states to control 
the system.  The Desired Dynamics block acts as a mapping function between the rate commands 
and the desired acceleration terms, which are the required form for the DI equations.  The struc-
ture of the Desired Dynamics block is shown in the flow chart in Figure 3.8. 

 
 

 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8  Desired dynamics development for dynamic inversion 
(adapted from Ref. 12) 

 
 
Several forms of desired dynamics are presented in this document and are evaluated in terms of 
performance and robustness.  The different forms of desired dynamics consist of 
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• Proportional dynamics13 
• PI dynamics12 
• Flying quality dynamics14 
• Ride quality dynamics 

3.6.1 Proportional Case 
 The simplest way of achieving desired dynamics implementation is the proportional, or 
first-order, case.  In this case, the desired dynamics are expressed as 

 ( )des cmdCV K CV CV
•

ω= − . (3.31) 

The Kω term in Equation (3.31) sets the bandwidth of the response.  The bandwidth must 
be selected to satisfy time-scale separation assumptions without exciting structural modes 
or becoming subject to the rate limiting of the control actuators.  Figure 3.9 shows the block 
diagram representation of the Proportional Desired Dynamics block introduced in this section. 
 
 
 
 
 
 

Figure 3.9  Proportional Desired Dynamics block diagram 
 
 
As shown above, the constant Kω amplifies the error between the CV command and its feedback 
term.  In Figure 3.9, CV is represented as the state, x.  So, the closed-loop transfer function for 
the proportional form of desired dynamics, shown in Equation (3.32), desires to place a single 
pole at s Kω= − . 

 
cmd

KCV
CV s K

ω

ω

=
+

     (3.32) 

3.6.2 Proportional Integral Case 
 The Desired Dynamics block is not limited to a first-order component.  If the Desired 
Dynamics block does not create satisfactory handling qualities (for piloted aircraft) using a set of 
first-order equations, a higher-order system is used.  A commonly used higher-order block is a PI.  
This form is particularly popular in DI literature that uses fighter aircraft examples12,15.  This type 
of Desired Dynamics block structure is also used in the linearized MACH controller designed by 
Honeywell for the X-38 vehicle and has been adopted for this study as well.  The block diagram 
representation of a PI desired dynamics component is shown in Figure 3.10.  It has the same 
form as that used in the Honeywell study12 with a KB of 5 sec–1 selected. 
 

+ cmdx & desx

x
ωK_ 
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Figure 3.10  Proportional Integral Desired Dynamics block diagram 
 
 
The block diagram for the PI form corresponds to the desired dynamics in Equation (3.33), where 
x is the CV. 

 ( )
2
B

des B cmd cmd
1 KCV K CV CV CV CV
2 4s

• ⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 (3.33) 

These dynamics have a closed-loop transfer function of 

 
B

cmd
B

1 KCV 2
1CV s K
2

=
+

. (3.34) 

which seeks to place a pole at Bs 0.5K= −  for any real constant KB.  In essence, this form of 
dynamics compensates for both the CV and the CV rate. 

3.6.3 Flying Qualities Case 
 Desired dynamics can also be specified in terms of flying quality levels. Mil-STD-
1797A14 contains the flying quality specifications for different vehicle classes and mission types.  
Using this information, the proper time domain characteristics corresponding to a desired flying 
quality level (damping ratio, natural frequency, time constant) can be selected.  These character-
istics can be used to determine the proper values for the gains and poles locations in this form 
of desired dynamics.  The flying qualities desired dynamics, shown in Figure 3.11, can be 
represented as 
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• +
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+ +
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where des n,desb 2= ζ ω  and 2
n,des fqc K= ω −  for the desired damping ςdes and natural frequency 

ωn,des.  Both the gain, Kfq, and zero location, a, are real constant values. 
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Figure 3.11  Flying Qualities Desired Dynamics block diagram 
 
 
 The closed-loop transfer function for the flying qualities dynamics is given in Equa-
tion (3.35).  These dynamics desire to place three closed-loop poles and to add a single zero to 
the system. 

 
( )

( )
fq

3 2
cmd fq fq

K s aCV
CV s bs c K s K a

+
=

+ + + +
 (3.36) 

3.6.4 Ride Qualities Case 
 The ride qualities form of desired dynamics that can also be used in DI are given in 
Equation (3.37) and represented pictorially in Figure 3.12. 

 ( )rq
des cmd

K
CV CV CV

s b
= −

+



 (3.37) 

 
 
 
 
 
 

Figure 3.12  Ride Qualities Desired Dynamics block diagram 
 
 
The closed-loop transfer function for this set of desired dynamics is given below by 

 rq
2

cmd rq

KCV
CV s bs K

=
+ +

, (3.38) 

which desires two places to closed-loop poles at 2
1,2 rqs 0.5b 0.5 b 4K i= − ± −  for real constants b 

and Krq. 
 For highly augmented airplanes, the control anticipation parameter (CAP) replaces the 
longitudinal short period requirements, such as damping ratio and natural frequency14.  The de-
sired longitudinal dynamics are instead designed by selecting a desired damping ratio and CAP 
value.  Equation (3.39) shows how to calculate CAP for a specific load factor nα and natural 
frequency. 
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2
nCAP

nα

ω
=  (3.39) 

The flying quality levels for various CAP and ζSP values are shown in Figure 3.13. 
 
 

 

 

 

 

 

 

 

 

 

Figure 3.13  Control anticipation parameter requirements for highly augmented vehicle 
 
 
 Once a CAP and a ζSP are selected to satisfy a desired flying quality level, the desired 
short-period natural frequency can be calculated from Equation (3.39).  The gain and the pole 
location for the open-loop desired dynamics are then backed out from these two specifications, 
ζSP and ωn,SP.  For example, the desired dynamics (see Figure 3.13) correspond to the following: 

• CAP = 0.802 
• ζSP = 0.8 

Using the CAP equation yields a desired ωn,SP of 1.4s–1.  The corresponding gain and pole 
locations are then found according to Equations (3.40) and (3.41), respectively. 

 2
rq n,SPK 1.96= ω =  (3.40) 

 SP rq SP n,SPb 2 K 2 2.24− = − ζ = − ζ ω = −  (3.41) 

The desired dynamics for this example become 

 ( )des cmd
1.96CV CV CV

s 2.24
= −

+



. (3.42) 
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3.7 Issues in Dynamic Inversion 

 The procedure illustrating the main steps in DI controller design is shown below.  
Also listed next to each step are some of the issues that were encountered when first learning 
and using this design methodology.  Some possible solutions, or options, to each of these issues 
are listed below the procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Options: 

1. If the inverse of the control input matrix does not exist, a multiple time scale method 
can be used – such as the 2-time scale approach presented in Section 3.5.  A command 
inverter, such as those presented in Section 3.4, or a higher order of feedback lineariza-
tion is also a possibility. 

2. There are no limitations on the form the desired dynamics may take.  However, some of 
the common forms found in the literature include proportional, PI, and flying qualities. 

3. If redundant control effectors are available, a control allocation scheme can be de-
signed in an effort to keep the required control deflections within the constraints of the 
actuator.  Adjustment or replacement of the desired dynamics may also help reduce the 
control response. 

STEPS ISSUES 

1. Select dynamic equation(s) to replace. Does the inverse of the control input 
matrix, B-1 or g(x)-1, exist?  
If so, is it close to singularity? 

2. Select desired dynamics. What form should they take? 

3. Form the control law. What happens when the control law asks 
too much of the control effectors? 

5. Design outer robustness loop. Is this really needed? 
What type do you use? 
If pole placement is used, where are the 
outer-loop poles placed? 

4. Design DI inner loop(s). If a 2-time scale approach is used, how 
are the two loops designed? 
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4. A robust outer loop is required because DI alone does not guarantee robustness.  The 
most popular robust outer-loop design methodology for DI controllers is µ-synthesis.  
Although in the literature LQG is not as well published in regard to DI controllers, LQG 
has been shown to be effective, as shown in Section 5.2.  LQR is another possibility for 
robust outer-loop design as well. 
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4 Simulation 

 In this chapter, the simulation component buildup is presented for the X-38 reentry 
vehicle, and the DI design process is then applied to the vehicle model.  Simulation results are 
shown and discussed for three DI design examples to give the reader more detail on how the 
design process is carried out. 

4.1 Control Surfaces 

 The Control Surfaces block (Figure 4.1) is composed of two sub-blocks, the Control 
Surface Management Logic sub-block and the Actuator Dynamics sub-block.  A conventional 
aircraft is usually equipped with three control surfaces; namely, a rudder, an elevator, and an 
aileron.  But, the X-38 has only two sets of control surfaces – rudders and elevons. Control 
Surface Management Logic must therefore blend three inputs into two inputs so that com-
mands can be fed smoothly into the Actuator Dynamics sub-block. 
 
 

 
 
 

 
 
 
 
 

Figure 4.1  Control Surfaces block diagram 
 
 

4.1.1 Definitions (from the X-38 Aerodynamic Design Data Book) 
 The X-38 vehicle has two sets of control surfaces (see Figure 4.2):  a pair of elevon 
control surfaces, located on the lower rear of the vehicle; and a pair of rudders, one at the top of 
each of the vertical fins.  The positive direction of deflection for the elevon is down (as shown in 
Figure 4.2), and, looking from the rear, to the left for the rudders.  Both elevons and rudders are 
dual-function control surfaces.  Each surface is deflected independently to provide the required 
control authorities. 
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Figure 4.2  Control surface deflections 
 
 
The elevon deflections are averaged to give the total elevon angle or elevator angle for pitch 
control. 

 
( )δ + δ

δ =
2

e eL R
e  (4.1) 

The average of the difference gives aileron angles for roll control. 

 
( )δ − δ

δ =
2

e eL R
a  (4.2) 

Similarly, the rudders’ deflections are averaged to give total rudder for yaw control. 

 
( )δ + δ

δ =
2

Lr rR
r  (4.3) 

The average of the difference gives speed brake angles for pitch and drag control. 

 
( )δ − δ

δ =
2

r rL R
sb  (4.4) 

4.1.2 Control Surface Limits 

 4.1.2.1 Deflection position limit 

 The X-38 control surface deflection limits are listed in Table 4.1. 
 
 

+ δeL + δeR 

+ δrL 
- δsb 

+ δrR 

- δsb 
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Table 4.1  X-38 Control Surface Deflection Limits 

Bodyflap Lower Deflection Limit  0.0º 

Bodyflap Upper Deflection Limit  45.0º 

Rudder Lower Deflection Limit  -25.0º 

Rudder Upper Deflection Limit  25.0º 
 
 

 4.1.2.2 Surface actuator rate limits 

 Though the actual rate limits of the actuators used for the X-38 vehicle are set as a 
function of hinge moment, the constant values shown in Table 4.2 were used for this study. 
 
 

Table 4.2  X-38 Control Surface Rate Limits 

Body Flap Deflection Rate Limit 50 deg/sec 

Rudder Deflection Rate Limit 50 deg/sec 

 
 

4.1.3 Control Actuator Modeling 
 Control surface actuators are modeled with the following second-order lag for both 
rudders and body flaps: 

 GACTUATOR(s) = ω

+ ζω + ω

2

2 22
n

n ns s
 (4.5) 

with ωn = 26 rad/sec and ζ = 0.707 in both sets of actuators. 

4.1.4 Control Surface Management 
 Unlike conventional aircraft, the X-38 is equipped with only two pairs of control 
surfaces; namely, rudders and elevons.  By commanding the deflections either symmetrically 
or asymmetrically, these two pairs of surfaces provide the same control effects that conventional 
rudders, elevators, ailerons, and speed brakes provide.  Currently, the speed brake mode is turned 
off for our model. 
 Three different command signals, which must be converted into excitation signals for the 
two pairs of control surfaces, come from the DI controller.  The following flow chart (Figure 4.3) 
illustrates the methodology used to blend the control surface movements.  Basically, this control 
surface management logic assigns priority to pitch axis control over the other two axes. 
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Figure 4.3  Elevon control management logic flow chart 
 
 
 Since optimization of the control surface allocation is beyond the scope of this study, a 
very simple surface management logic is developed and employed here.  However, this allocation 
is an important aspect of the ultimate design of the flight control system.  An important question 
yet to be answered is whether the DI design process flows naturally into this optimization 
scheme, or whether it makes optimization more obscure.  Figures 4.3 (above) and 4.4 
(below) illustrate control surface management logic for rudders and elevons. 
 
 
  
 

 
 
 
 
 

 
 
 
 
 

Figure 4.4  Rudder control management logic flow chart 
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4.2 Sensor Modeling 

 As in other aircraft, direct measurement of sideslip angle on the X-38 is highly uncertain.  
So, the sideslip angle is estimated by combining other measurements.  The following equation is 
one way to estimate sideslip angle.  An integral form of this equation is used in simulations for 
this study. 

 δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
β = + − + φ + δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
& 1pest meas meas measrr

meas meas meas meas
T T T T

Y YY gp r r
V V V V

 (4.6) 

All other parameters are assumed to be measurable.  White noise is added to the outputs to 
mimic sensor noise. 

4.3 Gust Modeling 

 Gust effects, modeled as a disturbance, are also considered when evaluating the DI 
controller.  Gusts are added to the body component velocity of the vehicle as shown in the 
following block diagram (Figure 4.5).  Typical gust inputs are also shown in Figure 4.6. 
 
 
 
 
 
 
 

Figure 4.5  Gust modeling 

 

 

 

 

 

 

Figure 4.6  Typical gust inputs 
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4.4 Comparison Between MACH Controller and TAMU Design 

4.4.1 Control Variable Definition 
 Derivatives of the state variables p, q, and r are used as CVs for the X-38 DI example.  
Instead of specifying p, q, or r, however, MACH specifies the dynamics of the derivative of the 
CVs.  The CV vector has three components:  LCV, MCV, and NCV.  Each of these components 
controls roll, pitch, and yaw moments, respectively.  The variables are defined as follows: 

 
LCV

CV MCV
NCV

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

 (4.7) 

with 

 sLCV p=  (4.8) 

( )
nz

s q
co nz co

g g g gMCV q nz cos cos p tan K q cos
V s V cos V V

⎛ ⎞λ
= + + γ µ − β + − γ +⎜ ⎟+ λ β ⎝ ⎠

 (4.9) 

 s
gˆNCV r K cos sin
Vβ= + β − γ µ  (4.10) 

In these equations, µ represents the bank angle about the velocity vector.  
 Since the CVs are no longer states themselves but are combinations of states, a CV 
definition block was added to our Simulink example to “upgrade” to the MACH-generated 
controller.  Although differences in roll axis CVs are minor, they can occur in either body-axis 
roll rates with flight path components or in stability axes.  And although the definitions in pitch 
and yaw axes CVs for the MACH controller differ from this example, both have a strong angular 
rate content.  Because the first terms on the right side of each equation dominate, MCV and NCV 
essentially become q and r, respectively, in our example controller. 

4.4.2 Desired Dynamics Module 
 The Desired Dynamics module of the MACH controller is, in form, a PI controller that 
is identical to our Simulink example in Figure 3.10.  It has the same magnitude of bandwidth, KB, 
of 5 sec–1 as well. 

4.4.3 Dynamic Inversion 
 The MACH controller starts with the same nonlinear form for the vehicle equations of 
motion as outlined in Section 3.2. 

 ( )
( ) ( )

,
   

=
≈ +

x F u x
f x g x u

&
 (4.11) 

where x  is the vector of state variables and u  is the vector of control effectors.  Recalling that 
the CVs in MACH are functions of the state variables, 



 

34 

 ( )=CV CV x , (4.12) 

where CV is the CV vector defined in Equation (4.7).  Then, 

 ( ) ( )
⋅ ∂ ∂ ∂

= = +
∂ ∂ ∂
CV CV CVCV x f x g x u
x x x

& . (4.13) 

So, the DI control law can be obtained as 

 ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−⎥⎦

⎤
⎢⎣
⎡

∂
∂

=
•−

xf
x

CVCVxg
x

CVu
des

cmd
1

. (4.14) 

4.4.4 Control Effector Priority (Surface Management) 
 As was previously explained in Section 3.2, the first bracket in the right side of the 
DI control law must be a square matrix so it can be inverted.   This mathematical requirement 
means that the number of control effectors must equal the number of CVs.  In the MACH appli-

cation, the row dimension of ∂
∂
CV
x

 is 3; therefore, the column dimension of ( )g x  must be 3 as 

well to have a square matrix.  Thus, three control effectors are required.  Since the three CVs in 
MACH have a strong angular rate content and the X-38 has three moment-producing controls 
(differential elevons, symmetric elevons, and rudders), the vehicle has an appropriate number 
of control effectors for three of the four flight control modes listed in Table 4.3. 
 
 

Table 4.3  MACH V201 Flight Control Modes 

Mode Flight 
Mode Conditions # of 

CVs CV Feedback # of 
Effectors Effectors 

1 ACS 
Only qbar < 2 3 INS:  p, q, r, β 3 Tx, Ty, Tz 

2 Blended 
ACS 

2 < qbar < 
30 3 INS: p, q, r, β, Nz 

NAVDAD:  α,V, qbar 
5 Tx, Ty, Tz, δa, 

δe 

3 Flaps 
Only 

qbar > 30  
and M < 6 2 INS: p, q, r, Nz 

NAVDAD:  α,V, qbar 
2 δa, δe 

4 Rudders 
and Flaps M >6 3 

INS: p, q, r, Nz , Ny  
NAVDAD (or 

FADS): α,V, qbar 
3 δa, δe, δr 

Note:  Tx, Ty, and Tz are the reaction control thrusters, and δa, δe, and δr are the resulting 
effective control surface deflections. 
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The four flight control modes presented in Table 4.3 fit two different situations (for the MACH 
controller) as follows: 
 

1. The number of controlled variables equals the number of available control effectors 
(modes 1, 3, and 4). 

2. The number of controlled variables is less than the number of available control 
effectors (mode 2). 

 
 In mode 3, there are only two available control effectors; the rudders are fixed.  
Consequently, the number of controlled variables is greater than the number of available control 
effectors.  To overcome this problem (having more unknowns than equations), the number of 
controlled variables is reduced to two by combining roll and yaw signals.  Then, the DI con-
trol law can be obtained. 
 When redundant actuators exist (mode 2), a unique solution for the actuator commands 
can be found by effectively reducing the number of available controls.  MACH applies a weight-
ed and biased pseudo-inverse solution.  Details of this approach are spelled out in the literature12. 
 The MACH controller also incorporates an algorithm called sum that deals with all 
possible combinations of the number of unknowns and the number of equations described in this 
section.  The sum algorithm is described in detail in Appendix A of Reference 10. 

4.4.5 Least-Squares Aerodynamic Model 
 The Simulink-based DI control examples presented in the following sections use time-
invariant coefficients.  Unfortunately, aerodynamic coefficients vary over time for all practical 
applications.  All coefficients in the DI controller must therefore be updated to account for flight 
conditions in which the vehicle is operating, and how these conditions change the aerodynamic 
coefficients.  However, it is not practical to carry all aerodynamic data at every individual point 
throughout the entire flight envelope.  For purposes of making appropriate updates, least-squares 
curve-fitting functions are applied to the aerodynamic data a priori.  This curve-fitting function 
is also carried on board the aircraft to generate the required coefficient updates.  The six aero-
dynamic coefficients used in V132 MACH modeling are functions of the following variables: 

Longitudinal: ( ) ( ) ( )i 1 2 e 3
cĈ K q K K

2V
= α + α δ + α , i D,L,m=  

Lateral: ( ) ( ) ( ) ( ) ( )i 4 5 6 7 a 8 r
b bĈ K K p K r K K

2V 2V
= α β + α + α + α δ + α δ ,   i Y , l , n=  

All Ks are a function of α only, and the Mach number is held constant at 0.6 in the described 
MACH controller. 
 When the same set of coefficients is applied to V201 in the TAMU example controller, 
the least-squares curve fitting is modified to be nonlinear both in α and in the Mach number for 
longitudinal and lateral/directional coefficients. 
 Lateral/directional derivatives are formed using an elevon trim angle setting, δe, based on 
a linear relationship of α for longitudinal trim over the Mach range. 

 Longitudinal: ( ) ( ) ( )q ek k k k e
qcĈ C ,M C ,M C ,M
2V δ

= α + α + α δ , k D,L, m=  
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 Lateral: ( ) ( ) ( )p rk k e k e k e
pb rbĈ C ,M, C ,M, C ,M,
2V 2Vβ

= α δ β + α δ + α δ  

( ) ( )a rk e a k e rC ,M, C ,M,
δ δ

+ α δ δ + α δ δ , k Y , l , n=  

with ( ) ( )e m M b Mδ = α +  

4.4.6 Outer Loops 

 4.4.6.1 Bank angle outer loop 
 Block diagrams of the bank angle outer loop used in the Simulink example and MACH 
controllers are shown in Figure 4.7. 
 
 
 
 
 
 
 
 

Figure 4.7  Comparison of roll angle outer loop structure 
 
 
 Obviously, both controllers have the same structure.  Also, the outer-loop gains, Kφ and 
bφ, are both normally set to 1 sec–1 before they are tuned to achieve desired performance. 
 The desp&  signal is passed through LCV Command Limit block for the MACH controller.  
This limiter consists of 

1. an absolute command limit based on JSC specifications, 
2. a command limit that prevents uncontrollable inertial coupling into the pitch axis, 
3. a command limit that prevents uncontrollable inertial coupling into the yaw axis, and 
4. an absolute command minimum that allows some commands to get through if the 

inertial coupling limits go to zero. 

More details of the Command Limit block in the MACH controller can be found on pages 4 and 
5 of Reference 10. 

 4.4.6.2 Angle-of-attack outer loop 
 The alpha outer loops for the Simulink example and the MACH controller also have 
essentially the same structure (Figure 4.8).  Both have unity feedback gain (Kα = bα = 1).  Once 
again, slight differences in the two controllers come from definitions in the command variables 
(MCV ≠ q). 
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Figure 4.8  Comparison of angle-of-attack outer loop structure 
 
 
 Finally, in terms of outer-loop structure, neither controller contains an outer loop that will 
control yaw angle. 

4.4.7 Comparison of Aircraft Models 
 The following nonlinear model12 is used for the MACH controller: 

c c
xx xz a p yy xz zzI p I r l l I rq I pq I qr− = + + + −& &  

c c 2 2
yy a p xz zz xx xzI q m m I p I pr I rp I r= + − + − +&  

c c
xz zz a p xx xz yyI p I r n n I pq I qr I pq− + = + + − −& &  

( )1V Dcos Y sin T cos cos g sin
m

= − β + β + β α − γ&  

( )1 Dsin cos Y cos cos Lsin T sin sin cos sin cos
mV cos

⎡ ⎤χ = β µ + µ β + µ + µ α − µ β α⎣ ⎦γ
&  

( )1 g cosDsin sin Y sin cos Lcos T cos sin sin sin cos
mV V

γ⎡ ⎤γ = − β µ − µ β + µ + µ α + µ β α −⎣ ⎦&

( )pcos r sin 1 Dsin cos tan Y tan cos cos L tan tan sin
cos mV
α + α ⎡µ = + β µ γ + γ µ β + β + γ µ⎣β

&  

( ) g cos cos tanT sin tan sin sin tan cos tan cos sin
V

γ µ β⎤+ α γ µ + α β − α γ µ β −⎦  

( ) ( )1 g cos cosq tan pcos r sin L T sin
mV cos V cos

γ µ
α = − β α + α − + α +

β β
&  

( )1 g cos sinr cos psin Dsin Y cos T sin cos
mV V

γ µ
β = − α + α + β + β − β α +&  

V cos cosξ = γ χ&  
V cos sinη = γ χ&  

h V sin= γ&  
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c
a ll qSbC=  
c
a mm qSbC=  
c
a nn qSbC=  

  

4.4.8 Sensor Processing 
 The MACH controller assumes full-state feedback.  However, since the air data system 
for the X-38 vehicle does not provide information regarding sideslip angle β, this angle must be 
estimated.  Figure 4.9 shows the block diagram of the sideslip estimation block in the MACH 
controller. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9  Sideslip Estimation block diagram (MACH controller) 
 

4.5 X-38 Mathematical Model 

4.5.1 Overview and Vehicle Parameters 
 X-38 vehicle coefficients were extracted from the output of a modified version of the 
SES16. The subroutine X35_AERO_DERIVS calculates aerodynamics coefficients periodically 
along the vehicle trajectory at user-specified sampling intervals.  Since this subroutine does not 
provide trimmed values of coefficients, for this study a trim routine was not added to the pro-
gram.  The coefficients used in the simulation are instead taken from untrimmed flight 
conditions. 
 Table 4.4 shows some of the parameters of the X-38 V201 vehicle used during the SES 
simulation as well as the DI controller simulation that will be described in the next section. 
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Table 4.4.  Mass Properties and Geometry for the X-38 

Parameter Value Units 
Weight 17578 lbs 
x-axis inertia, Ix 8090 slugs/ft2 

y-axis inertia, Iy 25900 slugs/ft2 
z-axis inertia, Iz 29200 slugs/ft2 
x-z product of inertia, Ixz 1300 slugs/ft2 
Reference area, S 260 ft2 
Reference span, b 27.5 ft 
Reference cord, c  10.8 ft 

 
 

4.5.2 X-38 Equations of Motion 
 The following nonlinear set of equations is used and integrated in the simulation: 
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4.6 Design Example 1 

 This section shows the simulation results obtained using the DI controller developed in 
Sections 3.4, 3.5, 4.1, and 4.2 of this document for the X-38 vehicle.  The structure of the simu-
lation, as shown in Figure 3.5, is built up in a MATLAB/Simulink environment.  A total of ten 
different simulation cases is presented for three different flight conditions.  The objective of this 
simulation exercise is to illustrate the characteristics of the DI controller as applied to the X-38 
lifting-body reentry vehicle with its rather large flight envelope. 
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4.6.1 Flight Conditions 
 Three flight conditions along the nominal trajectory of the X-38 are selected and used 
as initial conditions of the simulations to evaluate the performance of the designed controller.  
Those flight conditions are selected to represent three different regimes of the flight envelope – 
supersonic, transonic, and subsonic.  Table 4.5 summarizes the fight conditions evaluated.  Since 
the SES does not provide trimmed values of the vehicle aerodynamic coefficients, pitch, roll, and 
yaw coefficients are nonzero values. 
 
 

Table 4.5  Summary of Evaluated Flight Conditions 

 H0 (kft) M∞0 0q  (psf) α0 (°) β0 (°) φ0 (°) p0 (°/sec) q0 (°/sec) r0 (°/sec)
A 76.2 2.38 276.9 26.9 -5.6×10-5 1.61 0.64 0.13 0.34 
B 46.4 1.05 221.9 16.3 -1.3×10-2 -1.68 -5.2×10-3 -5.8×10-2 -0.12 
C 20.3 0.63 267.9 11.9 1.6×10-2 0.0 1.0×10-2 -0.43 5.9×10-2 

 
 

4.6.2 Simulation Run Matrix 
 Ten runs were made to demonstrate the characteristics of the DI controller.  This set of 
simulations is summarized in Table 4.6.  The test matrix consists of three subsets of test objec-
tives.  The first set, Runs 1 through 4, shows the vehicle responses during typical maneuvers per-
formed in each portion of the flight envelope using the nominal set of aerodynamics coefficients.  
The second set, Runs 5 through 9, shows how uncertainties in aerodynamic coefficients affect the 
performance of the DI controller.  Finally, Run 10 shows the effectiveness of the controller in 
coping with a side gust (i.e., acting essentially in the xy-plane of the vehicle), an outside 
disturbance for this mathematical model. 
 
 

Table 4.6  Simulation Run Matrix 

Run No. Flight Cond. Input Remarks 
1 A -5° α-Step, 25° φ-Singlet Nominal Case 
2 B -0.05°/sec α-Ramp,7.5°φ-Singlet Nominal Case 
3 C 7.5° φ-Singlet Nominal Case 
4 A 7.5° φ-Singlet Nominal Case with Kφ = 0.4 
5 A 10° α-Singlet, 10° φ-Singlet Nominal Case 
6 A 10° α-Singlet, 10° φ-Singlet 30% Aero Uncertainty* 
7 A 10° α-Singlet, 10° φ-Singlet 50% Aero Uncertainty* 
8 A 10° α-Singlet, 10° φ-Singlet 60% Aero Uncertainty* 
9 A 10° α-Singlet, 10° φ-Singlet 60% Aero Uncertainty*, Kφ=0.4
10 C Side Force Gust (50 ft/sec max) Side Force Gust 

 *See Table 4.7 for complete definition. 
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Table 4.7  Aerodynamic Uncertainty Matrix 
 ∆Lβ ∆Lp ∆Lr ∆Lδ

a 
∆Lδ

r 
∆M

α 
∆M

q 
∆Mδ

e 
∆N

β 
∆Np ∆Nr ∆Nδa ∆Nδ

r 
30% +.3 -.3 +.3 -.3 +.3 -.3 +.3 -.3 +.3 -.3 +.3 -.3 +.3 
50% +.5 -.5 +.5 -.5 +.5 -.5 +.5 -.5 +.5 -.5 +.5 -.5 +.5 
60% +.6 -.6 +.6 -.6 +.6 -.6 +.6 -.6 +.6 -.6 +.6 -.6 +.6 

 
 

4.6.3 Nominal Performance 
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Figure 4.10  Simulation Run 1, supersonic flight (M∞ = 2.38) 
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 Run 1 (Figure 4.10) is the nominal case for supersonic flight conditions.  A rather 
aggressive step input of –5° in α-command and a 25° singlet input in φ-command were used as 
command excitations.  Both inputs were engaged at 1 second, and the duration of the singlet was 
set for 9 seconds.  Despite the aggressive commands, the vehicle behaved very well both longi-
tudinally and laterally/directionally, with little overshoot about any axis.  Also, no actuator 
saturation occurred with either rudders or elevons throughout the simulation. 
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Figure 4.11  Simulation Run 2, transonic flight 
 
 
 Run 2 (Figure 4.11) demonstrates nominal transonic performance.  This time a ramp of 
only –0.05 deg/sec for α and a 7.5° singlet for φ were used as command inputs.  Despite the fact 
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that the controller was unchanged from the previous case, the vehicle again responded very well 
and no actuators saturated. 
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Figure 4.12  Simulation Run 3, subsonic flight, original unity outer loop gain 
 
 
 Run 3 (Figure 4.12) illustrates performance of the DI controller in subsonic flight.  α 
was commanded to maintain its initial value while φ was commanded to follow a 7.5° singlet.  
The controller functioned well until about 10 seconds into the simulation, when elevon saturation 
occurred and the performance degraded rapidly especially in the roll axis.  The roll axis degraded 
more than the pitch axis because, as explained previously, the control surface management logic 
puts priority on the pitch axis over the roll axis.  There is little augmented damping in roll during 
the elevon saturation period.  To overcome this deficiency, the gain of the bank angle outer loop 
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was reduced from 1 to 0.4, and the simulation was repeated using the same inputs.  Output from 
this modified controller is shown in Figure 4.13 (Run 4).  Although the elevons still saturate, the 
overall performance is improved over the unity feedback gain case. 
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Figure 4.13  Simulation Run 4, subsonic flight, outer loop gain = 0.4 
 
 
 One point of emphasis:  Although DI advocates usually assert no gain scheduling 
is needed because of DI’s “global linearization” structure, in reality gain adjustments are still 
required whenever commands are large enough to saturate actuators.  DI performs poorly during 
actuator saturation because only the aircraft dynamics are inverted and actuator dynamics are 
simply left out of the controller formulation (at least in this implementation).  In other words, 
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some optimization scheme that recognizes actuator constraints is needed to overcome saturation 
problems.  This drawback has more to do with the control surface allocation scheme than it does 
with the DI design itself.  However, this result clearly suggests that the control allocation issue 
needs to be attacked by treating actuators as nonlinear elements and including them in the DI 
process.  This effort will be handled in a future study. 

4.6.4 Uncertainties in Aerodynamic Coefficients 
 The next issue to be discussed is uncertainty in aerodynamic coefficients.  Out of the 
many parameters used in the simulation, 13 major aerodynamic coefficients were selected; they 
are presented in Table 4.5.  The uncertainties are represented as algebraic additions to each pa-
rameter, and the magnitude of the uncertainties is set to three different percentages:  30, 50, and 
60.  The signs of these uncertainties, either an addition or a subtraction to/from the nominal 
values, are randomly chosen and are also shown in Table 4.7. 
 This set of simulations consists of five runs, one run for each nominal case as well as 
30% and 50% uncertainty cases and two runs for the 60% case.  The same set of flight conditions 
(A in Table 4.6) is used for all five runs.  The same set of command inputs, 10° singlet com-
mands for both α and φ, is also applied for each run. 

The controller used for Runs 5 thorough 8 is the same controller that is used for Runs 1 
thorough 3.  The controller used for Run 4 has the same structure, but the gain of its outer φ-loop 
is reduced from 1 to 0.4. This modified controller also is used for Run 9. 
 Run 5 (Figure 4.14) is the nominal case.  The vehicle responded well to the commanded 
inputs and no actuator saturation took place. 
 Run 6 (Figure 4.15) is the 30% uncertainty case.  Despite the right elevon saturation at 
2 seconds into the simulation, the vehicle still behaved well. 
 Run 7 (Figure 4.16) is the 50% uncertainty case.  The divergence from the nominal case 
is obvious.  Overshoots are large, especially during the period when the elevon saturation occurs.  
The bank angle excursion is also large because of pitch axis priority in the control surface man-
agement scheme.  The lack of roll control authority under these conditions is underscored in 
this simulation. 
 Next, uncertainty is increased to 60% in Run 8 (Figure 4.17). The vehicle obviously 
diverges from the nominal trajectory, probably catastrophically. 

From the 50% uncertainty case results, as well as by looking at the right elevon time 
history in this case, it is clear that elevon saturation, coupled with the priority for pitch axis 
control, causes loss of control.  A quick (though not necessarily optimal) solution to this problem 
is, as in the previous case, reduction in outer φ-loop gain. This approach is examined in the next 
simulation run (Figure 4.18). 
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Figure 4.14  Simulation Run 5, supersonic flight (M∞ = 2.38) 
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Figure 4.15  Simulation Run 6, supersonic flight (M∞ = 2.38), 30% uncertainties 
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Figure 4.16  Simulation Run 7, supersonic flight (M∞ = 2.38), 50% uncertainties 
 
 
 By using the controller from Run 4 with the outer φ-loop gain reduced from 1.0 to 0.4, 
simulation Run 8 was repeated as Run 9.  With this change in gain, the vehicle readily recovers 
from the upset, which suggests that gain modifications are effective in alleviating actuator sat-
uration.  Certainly the complexity of the controller increases as the number of gain alterations 
increases. There is, therefore, a tradeoff that designers have to consider between controller 
complexity and performance of the controller for the best controller design. 
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Figure 4.17  Simulation Run 8, supersonic flight (M∞ = 2.38), 60% uncertainties 
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Figure 4.18  Simulation Run 9, supersonic flight (M∞ = 2.38), 60% uncertainties, 
outer Φ-loop gain = 0.4 

 
 

4.6.5 External Disturbances Effect:  Side Gust 
 The final simulation example is an external disturbance case.  We chose a side gust as a 
representative case of such disturbances and their effect on DI controllers.   The gust input shown 
in the upper left corner in Figure 4.19, Run 10, was added to the body y-axis velocity of the ve-
hicle.  The gust reaches up to 50 ft/sec, and the overall duration of the gust is 4 seconds.  The 
flight condition used is the subsonic case (M∞ = 0.63), Flight Condition C, shown in the 
Table 4.6. 
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 The side gust disturbance input produces a maximum sideslip angle of about 1°.  Also, 
bank angle is excited up to about 12° because of yaw-roll coupling.  Bank angle did damp out 
rapidly (after approximately 1 cycle), and the sideslip angle became essentially negligible roughly 
10 seconds after the gust was introduced.  Overall, this DI controller worked well for rejecting 
external disturbances. 
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Figure 4.19  Simulation Run 10, subsonic flight (M∞ = 0.63), 
external disturbance:  side gust 
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4.7 Design Example 2 

4.7.1 Introduction 
 Even in instances where the control input matrix g( )x  shown in Equation (3.4) is 
invertible, problems will arise if the matrix is very small in magnitude, indicating reduced control 
effectiveness on the state dynamics.  Should this occur, the control becomes unbounded, causing 
actuator saturation.  For example, a control ineffectiveness problem is typically encountered in 
the inversion of angle-of-attack dynamics because the vehicle’s longitudinal control surface has 
little effect on the angle-of-attack rate.  A 2-time scale method has been developed and applied in 
previous research to bypass this problem.17,18   In our method, the control surface is used to gen-
erate the pitch rate dynamics, q& , directly. The resulting pitch rate is then used to control α& .  
Figure 4.20 illustrates this approach in which two DI loops are present:  a fast inner-loop 
inversion for rotational rate variables, such as q, and a slow outer-loop inversion for 
rotational variables, such as α. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.20  2-time scale inversion of angle-of-attack dynamics 
 
 
 Equation (4.16) shows the pitch rate command generated by the slow outer-loop 
inversion, and Equation (4.17) shows the elevon command generated by the fast inner-loop 
inversion, required to produce the desired angle-of-attack response.  It should be noted that both 
control laws require angle-of-attack and pitch rate feedback, which is full-state feedback for the 
short period approximation. 
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The control laws shown above are used to invert the inherent pitch rate dynamics and the angle-
of-attack dynamics, respectively.  The proposed forms of desired dynamics developed in Section 
3.6 are applied separately to each of the short-period state dynamics before they are evaluated in 
terms of 

• Time domain performance, 
• Stability robustness and performance robustness, 

 
αcmd 

 
Fast 

Inversion

Plant and 
Actuator 

Dynamics 

 

δe,cmd 
 
 

α 
 Slow 

Inversion 

 
qcmd 

 
 

q 
 



 

53 

• Effect on motion sickness, 
• Quadratic cost function, and 
• Passenger ride comfort index. 

4.7.2 Time Domain Design Requirements 
 The time domain performance specifications used to evaluate vehicle response are 
short-period damping ratio and natural frequency.  The requirements for the X-38 vehicle are 
selected from Mil-STD-1797A14 to satisfy Level 1 flying qualities for a Class II vehicle during 
a Category B flight phase.  These Level 1 standards bound the short-period damping ratio and 
natural frequency as follows: 

 0.30 2.0≤ ζ ≤  (4.18) 

 1 1
n0.7s 1.3s− −≤ ω ≤  (4.19) 

The time domain response requirements for a step input are shown pictorially in Figure 4.21.  
These requirements satisfy Level 1 flying qualities for the vehicle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.21  Time domain performance specifications 
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 Two numeric indices are also used to evaluate the responses of each controller.  A 
quadratic cost function, J, (shown in Equation (4.20)) is used to evaluate the magnitude of each 
controller response in terms of the four longitudinal states and the elevon input. 

 T TJ Q R= +x x u u  (4.20) 

It was desired to weight angle-of-attack more heavily than pitch rate because angle-of-attack 
is the variable being controlled.  Since the behavior of the phugoid mode is less important, the 
velocity and pitch attitude states are weighted less than the short period states.  Therefore, the 
weighting matrices used are:  ( )Q diag .1 10 1 .1=  and R 1= .  A passenger ride comfort 
index19, shown in Equation (4.21), was also used to evaluate the responses. 

 zC 2.1 17.2a= +  (4.21) 

The RMS vertical acceleration, za , is ( ) ( )z 0 0 0 0a U U cos q gsin= α − α + θ θ&  in which vertical 
acceleration subscripts denote trim values.  Lower comfort indices indicate increased passenger 
ride comfort. 

4.7.3 Controller Design 
 The proportional, PI, and flying qualities dynamics desired are selected to satisfy 
Equations (4.18) and (4.19).  The ride qualities dynamics were selected to satisfy the desired 
CAP and damping ratio values shown in Figure 3.13.  Table 4.8 summarizes the desired dynam-
ics selected for these controllers.  Each set of dynamics acts on the error between CV command 
and its feedback term.  The robust outer loop was designed via pole placement through the use of 
MATLAB’s place command.  This outer loop consists of full-state feedback that is operated on 
by a matrix of gain values.  The poles were placed according to the desired closed-loop pole 
locations. 
 
 

Table 4.8  Desired Dynamics Selection 

Angle-of-Attack Case Desired Dynamics Slow inversion Fast Inversion 

Proportional 0.8 1.3 
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⎝ ⎠
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4.7.4 Time Domain Analysis 
 Time histories for the inverted angle-of-attack dynamics are shown in Figure 4.22.  
The PI dynamics respond very fast, causing a large actuator rate initially.  Although the flying 
qualities dynamics slightly violate the angle-of-attack time domain constraints, the other forms of 
dynamics stay within the time-domain specifications.  It should be noted that all responses satisfy 
the actuator position and rate constraints.  Of the various desired dynamics, the proportional form 
results in the lowest cost and lowest comfort index for an angle-of-attack DI controller.  The 
resulting costs and comfort indices of these responses are shown in Table 4.9. 
 
 

Figure 4.22  Time histories for the inverted α dynamics 

Table 4.9  Cost and Passenger Comfort Index 

Desired Dynamics Cost Comfort Index 
Proportional 130.4 2.56 
Proportional Integral 172.0 2.60 
Flying Qualities 142.4 2.58 
Ride Qualities 139.7 2.61 

X-38 V-201 
@ M = 1.05 
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4.7.5 Frequency Domain Analysis 
 Robustness is a key element in the reentry vehicle flight control system design because of 
the broad flight envelope in which these vehicles must operate.  The robustness technique that is 
used to analyze controllers developed in this work is adapted from current research in robustness 
methods for the X-38 vehicle20.  A sigma-Bode plot of the loop gain singular values is used to 
evaluate robustness over a range of input frequencies.  Further explanation of the sigma-Bode 
plot can be found in Section 4.8.2.  The performance and robustness criteria used to evaluate 
the controllers in this section are 

• Zero steady-state error. 
• Attenuation of low-frequency disturbances by a factor of 0.1. 
• Linear model accuracy to within 10% of actual plant for frequencies up to 2 rad/sec and 

growth without bound at 20 dB/decade thereafter. 

To satisfy these requirements, illustrated in Figure 4.23, the singular values of the loop gain must 
lie outside of the performance requirement and stability requirement areas for all frequencies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.23  Robustness constraints 
 
 
 An additional requirement on signal attenuation can be added to the singular value 
plot of Figure 4.23.  For this example, attenuate the signals between 0.6 rad/sec to 1.6 rad/sec 
in order to alleviate the passenger motion sickness that can occur at this frequency range19.  Since 
the singular values of a matrix represent the relative size of a mode, attenuate the singular value 
response within this frequency range.  The singular value response within this range should 
be continuously decreasing.  Any amplification within it would increase the passengers’ 
motion sickness. 
 The sigma-Bode plots for these cases are shown in Figure 4.24.  Both the proportional 
and the PI desired dynamics violate the stability robustness requirement above 20 rad/sec.  These 
dynamics also violate the attenuation requirement toward the higher end of the frequency range.  
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Figure 4.24 clearly indicates that flying qualities compensation and ride quality compensation are 
sufficient for a robust angle-of-attack DI controller because they satisfy stability robustness, per-
formance robustness, and the motion sickness constraint.  Table 4.10 summarizes the results 
of each set of desired dynamics in terms of satisfying time domain and frequency domain 
requirements. 
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Figure 4.24  Sigma-Bode of closed-loop system 
 
 

Table 4.10  Summary of Compliance with Design Specifications 

Desired Dynamics Step 
Response 

Control 
Responses 

Robustness 
Constraints 

Motion 
Sickness 

Proportional ✓  ✓  ✕ ✕ 
PI ✓  ✓  ✕ ✕ 
Flying Qualities ✕ ✓  ✓  ✓  
Ride Qualities ✓  ✓  ✓  ✓  
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4.8 Design Example 3 

4.8.1 Introduction 
 A systematic way to synthesize and analyze the robustness of a DI-based controller 
in a straightforward manner must be found so that engineering intuition can be easily applied 
throughout the design process.  The approach presented in this study uses LQG techniques21 to 
synthesize the outer-loop controller.  This approach is a relatively easy-to-use design method for 
multivariable control design.  It is a loop-shaping tool in the frequency domain that gives robust-
ness to the system22-25.  Desired dynamics are given by a dynamic compensator that shapes the 
loop.  Selected dynamics are based on performance and stability robustness requirements.  
These requirements are straightforwardly formulated during synthesis of the controller 
as frequency-dependent singular value bounds (Figure 4.25). 
 
 

 

 

 

 

 

Figure 4.25  X-38 lateral-directional control system 
 
 

4.8.2 Design Requirements 
 The controller design procedure is iterative and centers on designing a controller that 
will satisfy a set of specifications.  Specifications are usually stated in both time and frequency 
domains.  A time domain requirement for the X-38 lateral-directional system is defined by the 
time histories of a 10° bank angle response after a step input26.  The boundaries of this require-
ment are depicted in Figure 4.21.  Two different Mach-number-dependent requirements are 
specified in the time domain.  Clearly, requirements for the subsonic regime are much tighter 
than for supersonic flight conditions.  According to the requirements26, no sideslip angle con-
straint is spelled out for lateral-directional vehicle control.  Nevertheless, there should be as 
small a sideslip perturbation as possible to maintain a coordinated turn at all times.  The DI 
inner-loop controller cancels the existing system dynamics and replaces them with designer-
specified responses.  Since desired outputs are often decoupled about each axis, off-diagonal 
coupling effects are typically minimal for a good DI controller.  
 Next, frequency domain specifications are meant to ensure performance and stability 
robustness.  Both of these requirements are expressed using singular values.  Singular value is a 
suitable choice to express the magnitude of matrix functions because it generalizes known SISO 
statements and constraints of the design problem to MIMO cases.  In general, a singular value is 
thought of as the Bode magnitude plot for an SISO case, but singular values extend the concept 
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to a MIMO system as well.  Therefore, MIMO design is carried out using classical control design 
concepts that align with engineering intuition. 
 To achieve an adequate response, the gain in the low-frequency region must first be 
high enough to give a quick response to the input while the slope of the singular values must be 
steeper than –20 dB/decade to reduce the steady-state error.  Further, we assume it is desirable to 
have at least 0.1 rad/sec of crossover frequency to obtain a good closed-loop transient response.  
These requirements are integrated to form the singular value bounds in the low-frequency 
region.  This low-frequency “trapezoid” is sketched in Figure 4.26.  
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Figure 4.26  Frequency domain requirements 
 
 
 At high frequencies, singular values are bounded by the unmodeled dynamics associ-
ated with high-frequency models such as flexible and vibrational models.  These high-frequency 
models are often neglected when the plant model is being developed; the vehicle is often treated 
as a rigid body.  As a result, there is a difference between the assumed mathematical plant, G sb g , 
and the actual plant, ′G sb g .  This difference is defined and described as model uncertainty27.  
Here, an unmodeled dynamics model, suggested by Stevens and Lewis27, is used.  This uncer-
tainty model assumes the rigid body model is accurate to within 10% and up to a frequency of 
2 rad/sec, after which the uncertainty grows at a rate of 20 dB/decade.  This uncertainty model 
is expressed in the following transfer function and is used to model the uncertainties of the X-38 
vehicle at high frequencies: 

Performance
Requirement 

St
ab

ili
ty

 
R

ob
us

tn
es

s 
R
eq

ui
re

m
en

t  

High gain at low frequency for 
fast response 

−20 dB/decade to reduce 
steady-state error 

Minimum crossover 
frequency 

Low gain at high frequency for 
disturbance rejection 



 

60 

 m sωb g = + 2
20

 (4.22) 

We assume m ωb g  to be bounded with uncertainty in the X-38 vehicle transfer function.  
Multiplicative uncertainty is expressed in terms of an assumed plant model and the actual plant 
by 

 ′ = +G j I M j G jω ω ωb g b g b g , (4.23) 

where the unknown discrepancy satisfies a known bound. 

 σ ω ωM j mb gc h b g<  (4.24) 

Under this assumption, for stability robustness with modeling errors, the loop gain referred to the 
output should satisfy: 

 σ ω
ω

GK j
m s

b gc h b g< =
+

1 20
2

 (4.25) 

when 1 1m ωb g << .  Here, K  represents the compensator.  This uncertainty bound, which is 
obtained from the unmodeled dynamics, is applied in the high-frequency region.  Finally, the 
complete frequency domain bounds are shown in Figure 4.26 (previous page). 

4.8.3 Lateral-Directional Dynamic Inversion Controller 
 Lateral-directional DI control equations were developed previously in Section 3.2.2.  The 
following form, which is provided in Equation (3.12), is used for this example: 

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

meas

rp

rp
des

ra

ra
cmd

r
p

NNN
LLL

r
p

NN
LL

r
a

β
δ
δ

β

β

δδ

δδ

&

&
1

 (4.26) 

4.8.4 Dynamic Inversion Inner-Loop Controller 
 The lateral-directional DI controller, together with the X-38 model and control surface 
blocks, forms the DI inner-loop augmented system.  This augmented inner loop is 

 ILILILILIL uBxAx +=& , (4.27) 

where the inner-loop state vector, ILx , is 

 [ ]TIL rraarp δδδδφβ &&=x  (4.28) 

and the inner-loop control vector, ILu , is 
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 ⎥
⎦

⎤
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⎣
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p
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&
u . (4.29) 

The state matrix, ILA , and the control distribution matrix, ILB  for transonic flight (Table 4.5, 
Case B) are expressed numerically as follows: 
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We assume measurements are limited to bank angle, φ, and to sideslip angle, β.  Therefore, the 
following output equation results are: 
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 (4.30) 

The block diagram representation of this DI inner-loop is shown in Figure 4.27.  In addition, the 
singular values of the inner-loop versus frequency are plotted in Figure 4.28. 
 
 
 

 

 

 

 

 
Figure 4.27  Dynamic Inversion Control Inner-Loop block diagram 
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Figure 4.28  Singular values of the dynamic inversion inner-loop system 

 

4.8.5 Augmented System 
 Since DI alone does not achieve the desired specifications, stability robustness 
requirements at high frequencies are not met.  Integrators are added to each control channel to 
correct this deficiency.  The X-38 plant, actuators, and DI controller are augmented to form 
the following system: 

 augaugaugaugaug uBxAx +=&  (4.31) 

where 

 [ ]Taug rraarp βφ εεδδδδφβ &&=x  (4.32) 

and 
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In Equation (4.32), φε  and βε  are augmented states because of the addition of the integrators in 
the bank angle and the sideslip channels, respectively.  The augmented matrices, Aaug and Baug, 
are obtained by performing the following manipulations:  
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00
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2I
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Baug  (4.34) 

The corresponding singular value plot for this augmented system is shown in Figure 4.29.  
It suggests that the nominal design has now been reshaped to meet the specified frequency 
domain requirements.  But we still have not tailored the outer loop for robustness, and we have 
not dealt with the LQR-LQG observer issue. 
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Figure 4.29  Augmented system singular values 
 

4.8.6 Observer Design 
 The objective of this step is to create a fast dynamics observer that can be used with a 
regulator to form an LQG controller that will satisfy both performance and stability robustness 
requirements.  The form of the observer is a Kalman filter designed for the augmented system of 
the previous section.  The following weighting matrices were selected, by trial and error, so that 
the singular values of the resulting Kalman filter open-loop gain, ( )LsCΦ , satisfy the singular 
value frequency domain requirements: 
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 ( )88 101,101,1,1,1,1,1,1,1,1 ××= diagQ  and 2005.0 IR =   

where ( ) ( ) 1−−= AIsΦ s . 
 

The resulting Kalman filter gain is given by 
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L  

and the corresponding Kalman filter poles are 

49.087.0 ,50.086.0,72.01.14 ,5.184.18 ,4.184.18 ±−±−±−±−±−=s . 

4.8.7 Regulator Design 
 A regulator is designed next, assuming full-state feedback.  The resulting regulator 
is combined with the Kalman filter from the previous step to form an LQG controller for the 
system.  The regulator is based on LQR methodology, and the following weighting matrices are 
selected for the LQR gain calculations so that the corresponding LQG singular value plot (Figure 
4.30) satisfies the singular-value frequency domain requirements: 

 ( )88 101 ,101 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ××= diagQ  and 2IR =   
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Figure 4.30  Singular values of the LQG regulator 
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The resulting regulator gain is as follows: 
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For the LQG singular value plot, the complete dynamics are given by the following augmented 
system: 
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 (4.36) 

with transfer function ( ) ( )LsBKΦsCΦ L .  The singular values are plotted in Figure 4.30.  
The singular values of the resulting system clearly meet frequency domain specifications at all 
frequencies of interest. 

4.8.8 Time Domain Analysis 
 Once the controller is designed to meet the frequency domain specification, its 
performance must be tested in the time domain against the time-domain specification (Figure 
4.21).  Figure 4.31 shows the response to a 10° bank angle step input to the system as defined in 
Equation (4.36). The bank angle response is within the design envelope while the sideslip angle 
is negligible.  Also, both control surfaces are relatively inactive, and both displacement and rate 
are within the limits for each surface.  The controller design, therefore, satisfies time-domain 
specifications at this stage. 

4.8.9 Gain Scheduling Issues 
 As previously discussed, the main advantage over classical methods for the DI design 
methodology is the little need associated with the DI design methodology to schedule gains.  In 
order to verify this claim, the designed controller, which is tuned at the transonic flight condition 
(Table 4.5, Case B), is applied to other flight conditions (Table 4.5, Cases A and C) without 
modification.  The other two flight conditions, subsonic and supersonic, illustrate this anal-
ysis.  The same 10° bank angle step inputs are applied to all three cases, and the resulting 
responses are presented in Figure 4.32 for the subsonic and transonic flight condition cases. 
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Figure 4.31  10° bank angle step response 
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Figure 4.32  10° bank angle step response for different flight conditions 

 
 
In the transonic and subsonic cases, the designed controller is able to stabilize the system.  
However, it fails to stabilize the system for the supersonic flight condition.  In transonic and 
subsonic flight, control surface activities are well below the limits in rates and displacement.  
Though the objective of the DI controller is to produce a desired response at all flight conditions, 
no constraints are imposed on control surface activities in the DI control equation to achieve this.  
Control surface deflections and rates are based solely on the control distribution matrix.  In order 
to avoid actuator saturation, the DI controller must command no more deflection or rate than the 
system hardware can provide or the system becomes nonlinear and the linear analysis may break 
down.  But, these constraints overly restrict the available control power in some cases.  Since a 
controller selected with this process may not produce the “best” performance at all flight condi-
tions, the “nominal” (design) condition must be selected carefully to achieve good performance 
in a wide range of flight conditions. Moreover, the specification will change for different flight 
conditions.  For example, the time-domain specification changes drastically near Mach = 1.  
Changing requirements for the entire flight envelope must be considered during the design 
process.  The proposed approach allows an engineer to address this issue rather intuitively. 
 
 



 

68 

5 Robustness Analysis 

5.1 µ-Analysis Applied to the X-38 

5.1.1 Introduction 
 In the introductory sections of this document, singular-value decomposition is men-
tioned as the most common approach to adding robustness to a DI controller design.  But it 
should be again emphasized that µ-analysis is by no means the only way to tackle robustness 
issues with this flight control design.   Dang Vu28 suggests that combined techniques using linear 
quadratic design, quantitative feedback theory, Lyapunov synthesis, adaptive control, and differ-
ential games have all been initiated together with µ-analysis. 

5.1.2 Robustness Example:  Application to the X-38 Lateral-
Directional Aircraft Equations of Motion 

 The linear fractional transformation (LFT) structure – spelled out in detail in Section 6.2 
of this document – is now applied to the lateral directional aircraft dynamics for the X-38.  First, 
the lateral-directional aircraft equations of motion are represented as follows: 
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 (5.1) 

Next, we assume that – except for Lp, Lδa, Nr, and Nδr – all parameters are certain values.  We 
also know the variations (boundaries of uncertainty) for these parameters, too; and we will write 
them in the following form: 
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 (5.2) 

These bounded uncertainties are now integrated into the aircraft equations of motion using the 
LFT form.  Compare the decoupled roll axis equation 
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with the general expression in Equation (6.8).  Then, the following correspondences are clearly 
found: 
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Now, ensure the state space representation of the roll axis eqation with bounded uncertainties in 
Lp and Lδa is written by substituting the preceding relationship into Equation (6.13). 
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Similarly, yaw axis aircraft equation 
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 (5.6) 

is put into state space form with uncertainties in Nr and Nδr. 
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Integrating both roll and yaw axis equations with Equation (5.1) yields the following LFT form 
for the lateral-directional equations: 
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 The input/output description of the plant and the uncertainty block are shown in Figures 
5.1 and 5.2. 
 
 

 
 
 
 

 
 
 
 

Figure 5.1  Plant input/output 
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Figure 5.2  Uncertainty block 
 
 
These two blocks are interconnected to form a Parametric Uncertainty block, as shown in Figure 
5.3. 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5.3  Aircraft plant with parametric uncertainty 
 
 
 Parametric uncertainties are not the only type of uncertainties to be considered in this 
example.  As discussed in Section 6.2.2.1, unmodeled dynamics or uncertainty at the input is 
another important type of uncertainty to be examined.  When this is applied to our case study, 
the following weighting function, Win, is used.  Its place in the lateral-directional block diagram 
is shown in Figure 5.4. 
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Figure 5.4  Unmodeled lateral-directional aircraft dynamics 
 

 
 
 

 

 
 
 

 

Figure 5.5  Uncertainty weighting function 
 
 
 This particular uncertainty weight, Win, indicates that there is potentially 1% modeling 
error at low frequency and that the uncertainty in the model grows up to 100% at high frequency.  
The uncertainty weight is diagonal in form with equal diagonal elements.  The perturbation mode 
is a circle, or a sphere, around the nominal plant. 
 A third type of uncertainty, discussed in Section 6.2.2.2, is uncertainty at the output 
(uncertainty in the measurements used) in the feedback loop.  For our lateral-directional example, 
Figure 5.6 shows a block diagram representing the treatment of this type of uncertainty.  Since it 
is unstructured, it is a function of input frequency – as was the uncertainty at the input. 
 
 
 
 
 
 

 
 

 
 
 

Figure 5.6  Unstructured uncertainty at the plant input due to output uncertainty 
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Figure 5.7  Unstructured output uncertainty weight 
 
 
This output uncertainty weighing function implies in p and r a low-frequency measurement 
error of 0.003 rad/sec and a high-frequency measurement error of 0.015 rad/sec.  The model of 
measured value of p, denoted pmeas, is given by 

 
pmeas n pp p W= + η , (5.10) 

where ηp is an arbitrary signal with 

 p 2
1 ≥ η . (5.11) 

 Any type of controller could be used in conjunction with our DI controller for µ-
analysis.  Much of the literature favors an H∞ controller that can provide the robustness sought 
through µ-analysis – largely because µ-synthesis, which is an extended and more complex form 
of µ-analysis, requires an H∞ controller combined with µ-analysis to synthesize an optimized 
controller to achieve stability performance.  In our example, an H∞ controller is designed 
using the MATLAB µ-Analysis and Synthesis toolbox11. 
 The objective of the H∞ controller is to make the pitch and yaw rate of a vehicle closely 
follow the commanded values of these two parameters (i.e., the goal is to minimize the errors ep 
and ep).  Frequency-dependent weights are connected into the structure as shown in Figure 5.8. 
 
 
 
 
 
 
 
 
 

Figure 5.8  Performance Weighting block diagram 
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The overall performance error vector is given by 

 p cmd actual

cmd actualr

s 10 0e p ps 1
r rs 10e 0

s 1

+⎡ ⎤
⎢ ⎥⎡ ⎤ −⎡ ⎤+= = ⎢ ⎥⎢ ⎥ ⎢ ⎥−+ ⎣ ⎦⎢ ⎥⎣ ⎦
⎢ ⎥+⎣ ⎦

perfe . (5.12) 

 The shape of the weighting function (Figure 5.9) is chosen so that the controller provides 
performance in the low- to mid-frequency range.  Error weights on the roll and yaw rates indicate 
a tolerance of 0.1 rad/sec at low frequency and 1 rad/sec at high frequency. 
 
 

 
 
 

 

 
 
 
 

Figure 5.9  Performance weighting as a function of frequency 
 
 
 Limits on the actuator deflection magnitude and rates are also included in this example 
through Wact (actuator weight) shown in Figure 5.10.  This mathematical constraint is not a phys-
ical “limit” but is treated as a constant weight matrix to produce the “error at the actuator” eact. 
 
 
 
 

 
 

 
 
 
 

Figure 5.10  Control Surface Actuator Weights block diagram 
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The two types of performance weights just described are combined to form a closed-loop 
weighted performance transfer matrix as shown in Figure 5.11. 
 
 
 
 
 
 

 
 

 
 
 

Figure 5.11  Weighted performance objective transfer matrix 
 
 
 Next, an H∞ controller is designed to minimize the H∞ norm of the nominal closed-
loop transfer function from the disturbances to the errors.  This design is actually a sub-optimal 
H∞ controller because the controller is formulated after assuming that there is no model uncer-
tainty.  The D-K iteration process (part of the singular value decomposition process) must be 
done to approach a true optimal H∞ controller.  The input/output relation of the postulated 
sub-optimal H∞ controller is shown in Figure 5.12. 
 
 
 
 
 
 
 

 
 
 

Figure 5.12  H∞ controller input/output 
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 Although the designed system is a simple system, the order of the controller is 14.  High 
order is a disadvantage of H∞ controllers because system complexity increases as the order of the 
controller goes up. 
 
 

 
 

 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

Figure 5.13  Interconnection structure 
 
 

 Subsystems developed in the previous sections are now integrated to form an inter-
connection structure for µ-analysis.  A block diagram of the interconnection structure used for 
the analysis is given in Figure 5.13.  The main objective in creating an interconnection structure 
is to transform all of the subsystem LFTs to a single (large) LFT that will separate the unknown 
parts from the known parts of the system. The interconnection structure can be formed relatively 
straightforwardly since standard linear operations – such as cascade connections, parallel con-
nections, feedback connections, inversion, and frequency response – retain the LFT form.  In 
other words, interconnections of LFTs are still LFTs.  Since interconnection of the subsystem 
LFTs is a straightforward, albeit rather tedious, task, using commercially available software 
(e.g., the MATLAB µ-Synthesis Toolbox) is recommended. 
 Now, we are ready to apply the seven steps outlined in Section 6.2.3 to complete our 
µ-analysis and explore the stability robustness for our lateral-directional example. Applying the 
software tools mentioned above to the system shown in Figure 5.13, we complete the µ-analysis 
process.  The flight condition simulated is the transonic portion of the flight envelope at M∞0 = 
1.05, q = 222 lb/ft2, and α = 16.3°.  Uncertainty levels vary equally among four parameters, 
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ap rL , L , Nδ and
r

Nδ , from 10% to 100%.  Figure 5.14 summarizes the results obtained from this 

µ-analysis. 
 
 
 
 
 
 
 
 
 
 
           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.14  Parametric uncertainty results 
 
 
The results show that as little as 15% parametric uncertainty causes a divergence from stability.  
The implication is that the DI controller is quite sensitive to parametric uncertainty. 
 Next, uncertainties are applied individually to the previously mentioned four coefficients.  
This iteration, on the µ-analysis procedure, shows that uncertainty in rN  produces the least 
system stability sensitivity; uncertainties in pL lead to the most sensitivity.  Figure 5.15 summa-
rizes these results. 
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Figure 5.15  Maximum uncertainty tolerances for stability 
 
 

5.2 Linear Quadratic Robustness Analysis Applied to the X-38 

5.2.1 Introduction 
 A useful and easily understood performance index, wJ , is proposed by Ghaoui29, et al.  
Their time domain performance index is simply the value of the usual linear quadratic perform-
ance index.  However, Ghaoui, et al., have shown that when this performance index is used for 
worst-case analysis by taking the worst initial condition vector of unit magnitude, it is a simple, 
yet powerful metric for 

1. Comparing the performance of different controllers used with a given plant, 
2. Determining the worst disturbance histories for a given open- or closed-loop plant, 

and 
3. Determining the worst parameter changes for a given open- or closed-loop plant. 

 Using this performance index, the controller synthesized in Section 4.8 is analyzed for 
performance and robustness.  First, the performance of the LQG controller is compared to that of 
full-state feedback; i.e., the LQR controller.  Then, the same index is used to evaluate the robust-
ness properties to parametric uncertainty as well as to sensor noise and external disturbances (in 
particular, side force gust).  Analysis is extended to a nonlinear system with an LQR controller.  
Both the control surface positions and rates are allowed to saturate, and the guaranteed domain 
of stability is obtained.  Finally, this nonlinear analysis is further extended to a simple control 
surface actuator failure analysis. 

5.2.2 Performance Analysis 
 Given a stable and observable linear dynamic system, 
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( )

Cxy
xxBuAxx

=
=+= ,0     , 0&

 (5.14) 

wJ  is defined as 

 
00

0

0

max
xx

Qyy
T

T

xw

dt
J ∫

∞

≡ . (5.15) 

This is equivalent to 

 ( )[ ]Sλmax=wJ , (5.16) 

where S is obtained by solving the steady-state Lyapunov equation 

 0=++ QCCSASA TT  (5.17) 

and the state initial condition, 0x , is the corresponding eigenvector 

 ( )Sx eigvec=0 . (5.18) 

The following index is used throughout the controller analysis: 

 ( )dtrraaJ w ∫
∞

+++++=
0

222222 && δδδδφβ  (5.19) 

 The value of this index is JwLQG = 1.25e+5 for the designed LQG controller.  If we as-
sume full-state feedback (LQR controller), the index decreases to JwLQR = 2.93e+4.  Thus, the 
LQR controller is approximately four times better than the LQG controller using the performance 
index specified in Equation (5.19).  The difference in performance comes from the fact that the 
LQG controller has to estimate unmeasured states using an observer, whereas the LQR control-
ler uses all “perfectly measured” states for feedback. 
 The corresponding worst initial condition vector of unit length for the LQG controller is 
calculated as 

 
[ ]
[

]19.913.154.566.153.5         
65.142.347.143.335.4

000000000

−−−−−−−−
−−−−−−−−−=

=

eeeee
eeeee

rprraarp desdes &&&& δδδδφβ0X
. (5.20) 

This worst initial condition vector indicates that performance is highly sensitive to the desired 
dynamics states, desdes rp 00 , && .  Among the vehicle states, sideslip angle is the most sensitive state to 
the overall performance. 
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5.2.3 Robustness Analysis – Parametric Uncertainties 
One application of this time-domain quadratic performance index is to measure the performance 
of the system with parameter changes.  Conceptually, this process first finds the worst direction 
in the parameter space and stretches parameter variations in this direction until the system be-
comes unstable (i.e., ∞→wJ ).  A brief summary of how this robustness criterion applies to a 
compensated system is paraphrased from the original work of Ghaoui29, et al.  Consider a linear 
system 

 
( )

Cxy
xxBuAxx

=
=+= ,0     , 0&

 (5.21) 

with a dynamic compensator 
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 (5.22) 

where the c subscript denotes controller values and the s subscript denotes measured properties.  
Then, the performance index is rewritten as 
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which can be calculated easily from 

 ( )( )Sλmax=wJ  (5.24) 

where S is the submatrix in the solution of the steady-state Lyapunov equation 
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T
aaa QSAAS  (5.25) 
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and Q and R are the performance weighting matrices that define the performance index in 
Equation (5.24).  The a subscript denotes augmented properties.  Then, the performance of the 
system with parametric variations is obtained as follows. 
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Let p be the vector of plant parameters of interest, where 

 ( ) ( ) ( )pCC     ,pBB     ,pAA === . (5.26) 

The parameter vector, p, can be broken down into combinations of the nominal value of p, pnom, 
and the variation from the the nominal value, ∆p, as 

 ppp ∆+= nom . (5.27) 

Then, a scalar measure of simultaneous changes in all parameters is defined as 

 ( ) ( ) pΣpp ∆∆ 2−= Tσ  (5.28) 

where 

Σ = diagonal matrix of standard deviation. 

Now, we can determine the ∆p that maximizes Jw for a specified value of σ in Equation (5.28).  
Ghaoui29, et al., have shown that a necessary condition for the maximum is 

 αΣpp∆p ⋅⋅=−≡ σnom  (5.29) 

where α is a unit vector in the direction of the gradient 
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which is evaluated at p and 
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where P is determined by the Lyapunov equation 

 0xxPAAP T
00

T =++ . (5.32) 

Note that 

 ∫
∞

=
0

dtTxxP  (5.33) 

This equation starts with the worst initial condition vector x0 (i.e., the initial condition that 
maximizes Jw). 
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 Twelve parameters are selected for parametric uncertainty analysis.  They form the vector 
of plant parameters, p, in Equation (5.27) as 

 [ ]Trarprrpr NNNNNLLLLLYY
a δδβδβδβ δ

=p  (5.34) 

Then, the value of three standard deviations for each parametric uncertainty is assumed to be 
equal to the magnitude of the nominal value of each parameter. 
 For the designed LQG controller, the gradient of the performance index with respect to 
these 12 parameters was calculated as 

 
[

]2.9e43.5e4-5.4e33.0e21.5e3- 1.2e4                                           

5.7e4- 6.6e21.8e52.2e7-3.32.8e1-=⋅
∂

∂
Σ

p
wJ

  . (5.35) 

The magnitude of this gradient divided by the nominal Jw is 175, indicating that the performance 
index increases 175 times for a one-sigma change in the worst direction for the parameter space. 
 Figure 5.16 shows 1/Jw versus σ, where σ is defined in Equation (5.28) for the system 
with the LQG controller. 
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Figure 5.16  1/Jw versus σ for worst parameter change 
 
 

 Unstable 

σ = 1.65 

X-38 V-201 
@ M = 1.05 



 

83 

System instability occurs at σ = 1.65 in the worst direction in the parameter space.  At the 
stability parameter margin, i.e., σ = 1.65, 

 
[

]3-2.2e3-2.7e-4-4.1e5-2.3e4-1.1e- 4-9.0e                       
3-4.3e- 5-5.0e2-1.3e1.7-7-2.5e6-2.1e-1 =⋅∆ −ΣTp

  . (5.36) 

This indicates that the most important major contribution is from a decrease in Lβ and, to a 
lesser degree, a decrease in Lp.  The sensitivities of performance due to all other parameters are 
negligible as compared to these two parameters. 

5.2.4 Robustness Analysis – Disturbance 
 So far, all performance analyses assume no disturbances are present.  However, the 
presence of noise is inevitable in physical systems.  In this section, the original performance 
criterion is modified so that both process noise, w , and measurement noise, v , are addressed 
in the performance index.  To achieve this, the worst disturbances are assumed to be feedbacks 
of the augmented state, xa, where the gain matrices are determined by the solution of the Riccati 
equation 
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 , (5.37) 

where Sa, Aa, and Qa are defined in Equation (5.25) and 
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Now, Jw is given by 

 ( )[ ] WJw ηλ += Smax , (5.40) 

where η is a Lagrange multiplier and W is determined from 

 W tr a a
T

a a= P K R Kc h  (5.41) 

and Pa is the solution to the Lyapunov equation 

 ( ) ( ) 0xxKΓAPPKΓA =++++ T
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T
aaaaaaaa 00  (5.42) 
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 First, the original system defined in Equation (4.31) is modified to accommodate a 
disturbance due to side force gust. 

 distdistdistdistdistdistdist wΓuBxAx ++=&  (5.44) 

where 
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The difference from the original system is the addition of the Γdistwdis term.  This formulation is 
interpreted as side force translated into the sideslip angle, and this disturbed sideslip angle acts as 
a control although it is trying to destabilize the system.  In our example, we select max⎥ β⎥ = 1 
degree for transonic flight. 
 Next, another modification to the original system is made to accomodate the meas-
urement noise.  Adding sensor errors to continuously changing scale factors and biases to the 
measurements vector is the technique used. 
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Also, we assume the worst disturbances are feedbacks of the augmented state xa, where gain 
matrices are determined by the solution of the Riccati equation specified in Equation (5.37).  In 
our example, Rw = 1 and Rv = diag(3,1) are selected and the corresponding value of η is 6.84 × 
104 by interpolation.  Disturbances are given by the positive feedbacks defined in Equation 
(5.38); and the feedback sideslip disturbance vector, Kw, and sensor noise matrix, Kv, are 
calculated as follows: 

[
]20.248.746.369.952.463.133.122.132.133.2           
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vK  

The value of Jw increases to 1.69e+5, a 35% increase from the nominal case value of 1.25e+5.  
The worst unit initial condition vector is 

(5.47) 
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63.144.346.249.238.40
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 . (5.48) 

The magnitude of the initial measurement noise is obtained by substituting Equations (5.47) 
and (5.48) into Equation (5.38).  The ratio between the actual values to the noise for sideslip 
angle and bank angle is calculated as 5.4%, and 17.4%, respectively, at t = 0. 

5.2.5 Domain of Stability for the System with Actuator Saturation 
 Although the time domain criterion we have chosen is a useful tool for controller 
robustness analysis, its major drawback is that the entire structure is defined using a linear 
system assumption.  However, most aerospace systems are not linear; so this point is especially 
significant since the performance of a DI controller is sensitive to the available control power.  
This concern essentially arises because the control inputs, u(x), is proportional to the inverse 
of the magnitude of the control distribution function. 
 Therefore, the control surface position and rate should be included when the boundary 
of the stability region is considered.  Although this is a significant weakness of DI methodology, 
relatively little research has come to our attention30-32.  Recently, Tarbouriech33, et al., published 
a technique to compute a guaranteed domain of stability for a system subject to position- and 
rate-limited system inputs.  This study shows two different approaches:  the algebraic Ricatti 
equation (ARE) approach and the linear matrix inequality (LMI) approach.  Here, the simpler 
and more widely used approach of the two, the ARE approach, is used to find the domain of 
the system stability. 
 The objective is to find the largest possible Lyapunov stability parameter, ρ , such 
that the closed-loop system is locally stable in the largest Lyapunov level set.  In other words, we 
seek the largest domain of initial state vectors that produces a stable solution to the given Ricatti 
equation defined by Tarbouriech33, et al.  Though this methodology produces an optimal solution 
by solving a given Ricatti equation, this optimal solution depends on the choice of state and con-
trol weight matrices, which is always the case for Ricatti solutions.  Therefore, the largest domain 
of initial condition predicted by this approach does not grantee the largest stable initial condition 
domain globally, and the computed stability domain may still be a conservative prediction. 
 Actuator position and rate limits were previously listed in Section 4.1.2.  Using the DI 
formulation, the actuator dynamics are not accessible directly.  Instead, the desired yaw and roll 
acceleration and their time derivatives are used to limit the control inputs.  For the yaw axis, the 
desired yaw acceleration is bounded by 

 ( )2
maxmaxmax

sec/485.0 radrNaNr ra
des =+= δδ δδ&  (5.49) 

and the time derivative of the yaw acceleration is limited to 

 ( )3
maxmaxmax

sec/ 990.0 radrNaNr ra
des =+= &&&& δδ δδ . (5.50) 

Similarly, for the roll axis, 

 ( )2
maxmaxmax

sec/ 69.2 radrLaLp ra
des =+= δδ δδ&  (5.51) 

and 
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 ( )3
maxmaxmax

sec/ 66.5 radrLaLp ra
des =+= &&&& δδ δδ  . (5.52) 

Assuming full-state feedback with the regulator gain in Equation (4.39) and no parametric 
uncertainties and disturbances, the maximum value of the stability parameter (ρmax =) is 14.5.  
When we consider the domain of stability in the two different states – bank and sideslip angles – 
simultaneously, a 3-D plot is obtained (Figure 5.17).  The system is stable up toa  48.1° bank 
angle assuming no sideslip angle.  Similarly, the system is stable up to 1.59° sideslip assuming 
no bank angle.  The system is not guaranteed to be stable outside of this domain. 

 

 
Figure 5.17  Stability boundary 

 
 

5.2.6 Change in Domain of Stability due to Control Surface 
Actuator Failure 

 This nonlinear analysis next examines the stability domain in the event of a control 
surface actuator failure.  This process changes the limits on the position and rates of the input 
vectors.  Six failure modes are considerd, and results are compared to the nominal case where no 
control surface actuator failure has taken place.  The nominal and failure mode cases that are 
considered are the:  (1) nominal case, (2) one aileron failure case, (3) one rudder failure case, 
(4) one aileron and one rudder failure case, (5) two aileron actuators failure case, and (6) two 
rudder actuators failure case. Also, as in the previous section, perturbations on the inital condi-
tions are limited to bank and sideslip angles.  Figure 5.18 summarizes the results and their associ-
ated cross-sectional top view.  This figure clearly illustrates the difference in stability Lyapunov 
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levels due to different constraints on control inputs.  As predicted, the nominal case, where none 
of the control surface actuators are failed (and the largest amount of control power is available), 
shows the highest level of stability.  The ratio, compared to the nominal stability domain, for 
all six cases is summarized in Figure 5.19. 
 
 

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Bank Angle (deg)

Si
de

sl
ip

 A
ng

le
 (d

eg
) 

 
Figure 5.18  Change in domain of stability due to control surface actuator failure 
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Figure 5.19  Area of stability comparison due to actuator failure 
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6 Theoretical Foundations 

6.1 Basic Forms of Dynamic Inversion 

 Dang Vu asserts that the essentials of the DI approach are most easily understood in 
terms of an SISO system.  Since we followed that approach in our learning process, as described 
in Section 3, we have postulated a class of linear systems affinei in control that is represented by 
the following mathematical form: 

 ( ) ( )= +&x f x g x u  (6.1) 

 ( )=y h x  (6.2) 

where f(x) and g(x) are smooth vector fields on Rn and h(x) is a smooth mapping function 
that maps Rn into R.  This system is feedback linearizable of relative degree r if state and input 
transformations exist. 

( )
( ) ( )

rz x z

y x x v v

= Φ ∈

= α + β ∈

R

R
  

where ( )x 0β ≠ and Φ(x) is a diffeomorphismii that transforms Equation (6.1) into a controllable 
linear system. 

z Az Bv= +&  

 Following Dang Vu’s rather succinct development (with some clarifications), we 
differentiate the nonlinear output equation (Equation (6.2)) with respect to time and obtain 

( ) ( )h hy x f x g x u
x x

∂ ∂ ⎡ ⎤= = +⎣ ⎦∂ ∂
& &  . 

If the coefficient of u is zero, we continue with successive differentiations in the same fashion 
until a nonzero process coefficient surfaces.  Dang Vu’s succinct notation, which uses the Lie 
derivative from differential geometry for these repeated differentiations, is useful. 

                                                      
i“Affine in control” means that all transformations of finite system parameters remain finite under the 
controller’s action. 
iiA diffeomorphism is said to occur when the scalar components of a mapping (or transformation) F are r 
times differentiable with r ≥ 1 with respect to the scalar components of x (with a discrete time mapping 
xk = F xk+1 ). The mapping must also be invertible; that is, xk+1  = F -1xk+1 must hold.  Invertibility im-
plies that F –1 exists.  The scalar components of the inverse must likewise be r times differentiable.34 
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 ( ) ( )f
hL x x
x

∂
=

∂
f  (6.3) 

Equation (6.3) is the Lie derivative of the scalar function h with respect to the vector field f.  
Higher-order derivatives have a similar form. 

 ( ) ( )( )k k 1
ff fL h x L L h x−=  (6.4) 

Using this Lie derivative notation, the output equation can be rewritten as 

 ( ) ( ) ( ) ( )f g
h hy x f x g x u L h x L h x u
x x

∂ ∂ ⎡ ⎤= = + = +⎣ ⎦∂ ∂
& & . (6.5) 

If the second derivative in Equation (6.5) is 0 – that is, ( )gL h x 0=  – a second differentiation 
yields 

 ( ) ( )2
f g fy L h x L L h x u= +&& . (6.6) 

The differentiations end when ( )k 1
g fL L h x 0− =  for k =1, … , r – 1, but ( )r 1

g fL L h x 0− ≠ .  The 
last derivative of the sequence for the output response is then 

 ( ) ( ) ( )r r r 1
f g fy L h x L L h x u−= + . (6.7) 

The number r is called the relative degree of the original control equation (Equation (6.1)). 
 If we define our coordinate transformation in terms of the Lie derivative, 

( ) ( )k 1
k k fz x L h x−= Φ =   for k = 1, 2, …, r, 

the resulting transformed set of equations is linear, of dimension r, and in a companion form 
called the Brunovsky canonical form. 

 

0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1
0 0 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= + = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

z z v Az Bv

L

L

& L

L M

L

 (6.8) 

where ( ) ( )r r 1
f g fv L h x L L h x u−= + .  Vu points out that exact linearization is possible when the 

relative degree r is equal to the order of the system n and the linearized system (Equation (6.8)) is 
both controllable and observable. 
 Since we are interested in obtaining for the linearized system a control law that will 
impose desired behavior on the original nonlinear system, it is also necessary that we carefully 
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examine any control law in terms of stability of the nonlinear system.  Obviously, that require-
ment suggests that we transform any postulated control law back into the original coordinates.  
Symbolically, we can write this transformation as 

( ) ( )u x x v= α + β  

with   ( ) ( )
( )

r
f
r 1

g f

L h x
x

L L h x−
α = − and ( )

( )r 1
g f

1x
L L h x−β = . 

6.2 Stability and Robustness Analyses 

 In this section, stability and robustness analyses are described for the DI controller.  
The most commonly used methodology used to analyze robustness of linear systems using DI 
controllers is based on the structured singular value (µ) and a technique now widely described 
in the literature as µ-analysis.  However, µ-analysis is not the only method used to examine 
the stability and robustness of DI-based controllers. 

6.2.1 Linear Fractional Transformations 
 LFTs are used to integrate parameter variations (uncertainty) into the system under µ-
analysis.  As the first step in the µ-analysis procedure, all parameter variations are collected into 
an uncertainty matrix in LFT form.  Then, µ-analysis looks for the smallest variation in these 
parameters that drive the system to instability.  In this section, the methodology to create an 
LFT form is explained. 
 Suppose we have a linear system that is described by the following: 

 
x ax bu
y x

= +
=

&
 (6.9) 

Now, we assume that the value of a  varies between a−  and a+ . 

 a a a− +≤ ≤  (6.10) 

where 

    
-           a lower lim it  of  variation in a

           a upper lim it  of  variation in a+

=

=
 

This relation can be rewritten in terms of nominal value of a , noma , as 

 nom 1 a

2 a

ka a
1 k

δ
= +

− δ
 , (6.11) 

where 
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( ) ( )

( )

nom

1

2

a

           a nominal value of a

2 a a a a
           k

a a

a a 2a
           k

a a
           -1 1

+ −

+ −

+ −

+ −

=

− −
=

−

+ −
=

−
≤ δ ≤

 

When the upper and lower variations from the nominal values are equal – that is, when 
nom noma a a a+ −− = −  – then the previous equation simplifies to 

 nom
aa a k= + δ , (6.12) 

where 

nom

nom nom

a

          a nominal value of a

          k a a a a
          1 1

+ −
=

= − = −
− ≤ δ ≤

 

The perturbation in a  described in Equation (6.11) is integrated into Equation (6.9) and is now 
expressed in state-space form by introducing the fictitious terms az  and aw  as 

   

 
1

a 2 a

x a k b x
z 1 k 0 w
y 1 0 0 u

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

 . (6.13) 

 The block diagram in Figure 6.1 (above) corresponds to the state-space expression 
(Equation (6.13)).  Here, we have completely separated what is known, the G matrix, from what 
is uncertain, ∆.  We treat ∆ as uncertain; but, we do know its range:  –1 ≤ ∆ ≤ 1.  For now, uncer-
tainty in a  alone is considered.  The next case to be considered is the case when there is an 
uncertainty in b .  This case, variation in b , is expressed similar to the previous case as 

 

/
1
/

b 2 b

a k bx x
z 0 k 1 w
y 1 0 0 u

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

&

, (6.14) 

where 
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( ) ( )

( )

/
1

/
2

2 b b b b
k

b b

b b 2b
 k

b b

+ −

+ −

+ −

+ −

− −
=

−

+ −
=

−

 

 

 

 

 

 

 
Figure 6.1  Linear  Fractional Transformation block diagram 

 
 
 Finally, combining the expressions for uncertainty in a  and in b , the following 
state-space expression results.  The accompanying block diagram (Figure 6.2) is a companion 
to Figure 6.1. 

 

/
1 1

a 2 a
/b b2

x a k k b x
z 1 k 0 0 w
z w0 0 k 0
y u1 0 0 0

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

&

 (6.15) 

 

 

 

 

 

 
Figure 6.2  Companion to the Linear Fractional 

Transformation block diagram 
 
 
 Now, ∆ is no longer a scalar uncertainty but is a 2 ×2 diagonal matrix with normalized 
uncertainty terms. 
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 a

b

0
0
δ⎡ ⎤

∆ = ⎢ ⎥δ⎣ ⎦
 (6.16) 

Again, we have separated what is known from what is uncertain but bounded.  Since ∆ is no 
longer a scalar, we have to make another choice for a norm:  the maximum singular value.  It is 
not difficult to see that ( )∆σ  ≤ 1.  A very important observation is that the uncertain element ∆ 
has a fixed structure:  a diagonal matrix consisting of the individual uncertainties in a  and b .  
Thus, unstructured uncertainty at the component level has become structured uncertainty at 
the system level.  LFTs are the mathematical tools that allow us to provide this systemic 
structure for the uncertainty. 

6.2.2 Other Types of Uncertainty Models 
 Other than the parametric uncertainty described in Section 6.2.1, there are at least two 
other types of uncertainty models.  These are Unmodeled Dynamics or Uncertainty at the Input 
and Uncertainty at the Output models.  The major difference between parametric uncertainty and 
the other two types of uncertainties is that parametric uncertainties are real-valued while the other 
types of uncertainties are complex-valued perturbations.  The two types of uncertainty models are 
explained in the following subsections. 

 6.2.2.1 Unmodeled Dynamics (Uncertainty at the Input) 
 During the linearization process, higher-order terms in aircraft equations of motion 
are ignored.  Also, other uncertainties arise due to aeroelasticity, control surface variations, and 
vehicle flexibility.  Usually, the plant model is a good system representation term at low- to mid-
frequency inputs, but modeling uncertainties become larger with high-frequency inputs.  Instead 
of attempting to include all modeling uncertainties, the modeling uncertainties are treated as 
additives to the plant inputs.  Figure 6.3 shows a general block diagram representing this 
approach to accounting for uncertainty at the plant input. 
 
 

 
 
 
 

Figure 6.3  Unmodeled Dynamics block diagram 
 
 
 This type of uncertainty is parameterized with two elements, Win and ∆in.  Win is a 
weighting transfer function (assumed to be known) that reflects the amount of uncertainty in a 
model with respect to frequency.  The other parameter, ∆in, is a stable unknown transfer function 
that nevertheless satisfies the condition ⎢⎢∆in⎢⎢∞ < 1. 

 6.2.2.2 Uncertainty at the Output 
 Similar to Unmodeled Uncertainty, uncertainty of the measurements is modeled as 
Uncertainty at the Output.  A block diagram representing how this type of uncertainty is modeled 
is shown in Figure 6.4. 

G K 

 ∆in +
+ 
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Figure 6.4  Uncertainty at the Output block diagram 
 

6.2.3 Structured Singular-Value Analysis (µ-Analysis) 
 Now that we know how to represent uncertainties in the system using LFTs, we must 
turn our attention to analyzing the robustness of systems modeled in this fashion.  We follow the 
most common practice today by basing our analysis on the structured singular value, µ, and using 
available software tools to perform the µ-analysis.  The technique is based on the following 
theorem: 

 ( )( )11Robust  Stability M j 1   ∆⇔ µ ω < ∀ ω  (6.17) 

where M11 is the left upper corner block of M; i.e., 

 ( ) ( ) ( )
( ) ( )

11 12

21 22

M j M j
M j

M j M j
⎡ ⎤ω ω

ω = ⎢ ⎥ω ω⎣ ⎦
 (6.18) 

and the function ∆µ is defined as 

 ( )
( ) ( ){ }

1M
min : ,det I M 0∆µ ≡

σ ∆ ∆ ∈ ∆ − ∆ =
 (6.19) 

where ( ){ }1 2 ndiag , , ..., ∆ = ∆ ∆ ∆ . 

 According to this theorem, ∆µ  is a function of M that depends on the structure of ∆ .  

∆µ is the reciprocal of the smallest ∆  (where we use σ  as the norm) we can find for the set ∆  
that makes the matrix I M− ∆  singular.  If no such ∆  exists, ∆µ  is taken to be zero. 
 The general framework and the µ-analysis transformation are shown in Figure 6.5. 
 

∆output 

G K 

+
+

+ 

-
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Figure 6.5  General framework and µ-analysis transformation 
 
 
 Even though the function ∆µ  is defined, we must still calculate it.  Unfortunately, no 
exact calculation algorithms exist.  So, we must calculate its upper and lower bounds.  Normally, 
the upper bound is used since these values of µ  are “safer” (that is, they are more conservative).  
The upper bound is defined as 

 ( ) ( )1inf −
∆

∈
µ ≤ σ

D D
M DMD , (6.20) 

where D  is the scaling matrix.  Figure 6.6 geometrically illustrates the effect of D -scales. 
 
 
 

 
 
 

 
 
 

Figure 6.6  The effect of D -scales 
 
 
 Another important feature of the upper bound is that it can be combined with the H∞ 
controller synthesis technique to yield a µ-synthesis method.  Note that the upper bound, when 
applied to transfer functions and maximized across frequencies, is simply a scaled H∞ norm. 
 The steps needed to test the robust stability using µ-analysis are as follows: 

1. Construct the interconnection structure, M, which is a known linear system. 
2. Define a structured perturbation set, ∆. 
3. Combine M and ∆ to form the feedback system shown in Figure 6.5. 
4. Calculate a frequency response of M. 
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5. Calculate the upper and lower bounds for µ. 
6. Find the upper bound peak value. 
7. If µpeak < 1: pass; if µpeak > 1: fail. 
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