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Abstract 

Respiratory syncytial virus (RSV) and parainfluenza virus cause severe respiratory 

disease, especially in infants, children, and the elderly. An in vitro model  that  accurately 

mimics infection of the human respiratory epithelium (HRE) would facilitate vaccine 

development greatly. Monolayer cultures traditionally used to study these viruses do not 

accurately and precisely differentiate the replication efficiencies of wild type and attenuated 

viruses. Therefore, we engineered novel three-dimensional (3D) tissue-like assemblies (TLAs) 

of human bronchio-epithelial (HBE) cells to produce a more physiologically relevant in vitro 

model of the HRE. TLAs resemble HRE structurally and by expression of differentiated 

epithelial cell markers. Most significantly, wild type viruses exhibited a clear growth advantage 

over attenuated strains in TLAs unlike monolayer cultures. In addition, the TLAs responded to 

virus infection by secreting pro-inflammatory mediators similar to the respiratory epithelia of 

infected children. These characteristics make the TLA model a valuable platform technology to 

develop and evaluate live, attenuated respiratory virus vaccine candidates for human use. 

Respiratory virus diseases, the most frequent and least preventable of all infectious 

diseases, range in severity from the common cold to severe bronchiolitis and pneumonia.[1, 2] 

Two paramyxoviruses, RSV and parainfluenza virus type 3 (PIV3), are responsible for a 

majority of the most severe respiratory diseases of infants and young children.[3] RSV causes 

70% of all bronchiolitis cases[4] and is a major cause of morbidity and mortality worldwide, 

especially in infants.[5] PIV3 causes 10% -15% of bronchiolitis and pneumonia during infancy, 

second only to RSV,[6] and 40% of croup in infants.[7] 

To date, licensed vaccines are not available to prevent these respiratory diseases. At 

present, traditional monkey kidney (Vero and LLC-MK2) and human (HEp-2) tissue culture cells 

and small animal models (mouse, cotton rat, guinea pig, ferret, and hamster) fail to accurately  

imitate  viral  replication  and  human  disease  states.[8] Lacking an authentic model has 

impeded the development and evaluation of live, attenuated vaccine candidates. 

Development of a physiologically relevant in vitro tissue culture model that reproduces 

characteristics of the HRE, the primary target of RSV and PIV3, would aid in predicting clinical 

attenuation and safety of vaccine candidates. Successful tissue engineering of a 3D human 

intestinal model using novel NASA technology[9] inspired the development of a tri-culture 3D 

model for the HRE. Sequential layering of primary mesenchymal cells (comprised of normal 

human fibroblasts and endothelial cells) followed by BEAS-2B epithelial cells derived from 
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human bronchi and tracheae were recapitulated on Cultisphere and/or cytodex3 microcarriers in 

cylindrical vessels that rotate horizontally, creating an organized epithelial structure. Horizontal 

rotation randomizes the gravity vector modeling aspects of microgravity.[9,10] Mesenchymal and 

epithelial cells grown under these conditions reproduce the structural organization, multicellular 

complexity, and differentiation state of the HRE (Goodwin et al, NASA/TP 2008-214771). 

The opportunity to study respiratory viruses in a nasal epithelium model is invaluable 

because the most promising respiratory virus vaccine candidates are live attenuated viruses for 

intranasal administration. Here we characterize the interactions of respiratory viruses and 

epithelial cells grown under modeled microgravity in comparison to gravity-ladened monolayers. 

3D HBE TLAs and traditional monolayers (two-dimensional [2D]) are infected at 35°C, the upper 

temperature of the upper HRE,[11] to simulate in vivo infection conditions. Growth kinetics of wild 

type (wt) RSV and PIV3 viruses were compared in 2D and 3D cells to that of strains attenuated 

in humans[12-14] or rhesus macaques.[15] 

This novel 3D HBE model also offers an opportunity to study whether the epithelial cell 

function, especially in host defense, is recapitulated by mimicking the structural organization of 

the HRE. In vivo, airway epithelial cells play a significant and dynamic role in host defense[16] by 

blocking paracellular permeability and modulating airway function through cellular interactions 

or tight junctions. As regulators of the innate immune response, epithelial cells constitutively 

express cytokines, chemokines, and colony-stimulating factors including RANTES, IL-8, IL-6, 

GM-CSF, and G-CSF for proactive host defense.[17] In response to viral infection, epithelial cells 

induce potent immuno-modulatory and pro-inflammatory cytokines that recruit phagocytic and 

inflammatory cells to clear the virus and enhance protection. 

Although disease pathogenesis is classically attributed to the cytopathic effects of the 

pathogen, severe disease states associated with RSV and PIV3 are attributed to the 

inflammatory response, especially in infants. RSV is a potent inducer of cytokines and pro-

inflammatory mediators in epithelial cells in vivo.[18] A differentiated human epithelial model 

independent of the complete functional immune system will help elucidate the role of epithelial 

cells in respiratory disease.  

We reported here, virus and host cell interactions in 3D HBE TLAs are similar to those in 

vivo. Because the epithelial cell organization[19] of the TLAs impacts not only the expression of 

airway epithelial characteristics, but also cellular communication, the TLAs represent a more 

physiologically relevant model of the HRE than BEAS-2B or other non-tumour monolayer 
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models of respiratory disease. As a result, wild type respiratory viruses have a clear growth 

advantage over attenuated viruses in TLAs unlike traditional monolayers. In addition, the TLAs 

respond to wild type virus infection by secreting pro-inflammatory mediators characteristic of 

infected HRE. TLAs expressing microbial defense mechanisms provide an excellent model to 

study the interactions of respiratory pathogens with their host and to identify the innate immunity 

mediators. Therefore, 3D HBE TLAs offer advantages for the study of respiratory viruses and 

the development of viral vaccine candidates. 

 

1.0 Results 

Characterization of 3D HBE TLAs 

The HBE-TLA is a multilayered tissue primarily comprised of pseudo-stratified epithelial 

cells, a basement membrane, and underlying mesenchymal cells.[16] Ciliated, secretory, and 

basal epithelial cells are joined by intercellular junctions and anchored to the basement 

membrane via desmosomal interactions. Through tight junctions and the mucociliary layer, the 

basement membrane maintains polarity of the epithelium and presents a physical barrier 

between the mesenchymal layer and the airway.[20,21] 

To mimic the structural organization of the HRE, primary mesenchymal cells derived 

from human bronchi and tracheae (HBTC) form the initial layers of the TLAs on cytodex or 

Cultisphere microcarriers. Four to 6 days later, immortalized human epithelial BEAS-2B cells 

are layered on top. HBE TLAs develop in rotating wall vessels, a modeled microgravity 

environment (Fig. 1a–b). HBE TLAs share many of the structural and morphological 

characteristics of the HRE including multiple layers (Fig. 1c-f) of different cell types as indicated 

by different shapes of cells and nuclei (Fig. 1c-f) and tight junctions (Fig. 1c-e). Microvilli (Fig. 

1d and g) are also evident on the apical side. Exposure to air may be required for cilia 

development. Extracellular matrix simulating the basement membrane is also present (Fig. 1f). 
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Figure 1. 3D HBE TLAs have characteristics of the human respiratory epithelium. 3D HBE TLAs grown on 

Cytodex 3 beads in modeled microgravity for 31 to 35 days as depicted by scanning electron microscopy (a and b) 

(magnification: 286x and 1100x, respectively). Transmission electron microscopy of sections of 3D HBE TLAs grown 

in modeled microgravity for 31 to 35 days (c-f) showing multiple cell types (as indicated by the morphology of cells 

and nuclei), multiple layers of cells (c-f), extracellular matrix (f), microvilli (d, g), polarization (d, g), tight junctions 

(arrows) (c-e), and hemidesmosome (arrowhead) (e). Endothelial cells are longer than wide, with long narrow nuclei and 

no microvilli. Epithelial cells are robust with compact nuclei and microvilli. EMC = extracellular matrix, ENDO = 

endothelial cell, EPI = epithelial cell, ER = endoplasmic reticulum, M = mitochondria, MV = microvilli, N = nucleus, 

NE = nuclear envelope, P = polyribosomes. Original magnifications are 5000x (c), 25,000x (d), 10,000x (e), 7500x (f), 

and 12,000x (g). 
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Expression of HRE-specific markers 

Fixed TLAs, HBTC monolayers, BEAS-2B monolayers, and normal human lung were 

immunostained for epithelial-specific cell markers to evaluate the cellular composition and 

differentiation state (Fig. 2). The markers were selected to highlight epithelial characteristics 

including tight junctions (ZO-1), and polarization (epithelial membrane antigen [EMA]). 

Expression of ICAM-1 and cytokeratin 18 highlight a differentiated state. Expression of mucin 

glycoprotein indicates the potential to produce mucus. As illustrated, expression levels of 

epithelial markers in TLAs are very similar to the levels in normal human lung than in 2D BEAS-

2B and HBTC cells. Note that the staining of ZO-1 is concentrated at cell junctions in 3D HBE 

TLAs as in the human lung. There may be low expression of ZO-1 in HBTC monolayers, but the 

staining is more diffuse. A neuronal-specific marker, microtubule associated protein 2 (MAP2), 

is not expressed in 3D HBE TLAs but is expressed in 3D normal human neural progenitor cells. 
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    Human Lung         2D HBTC         2D BEAS-2B     3D HBE TLAs   3D HBE TLAs 

 

 

 Figure 2. 3D HBE TLAs express markers of the human respiratory epithelium. Cells in panels a-q were immunostained with 

fluorescent primary or secondary antibodies and analyzed by confocal microscopy. Cell nuclei are red and the epithelial markers are 

green. Antibody to one neuronal marker antibody was used to illustrate specificity (green). Panels a, f, k, r, and v are human lung 

sections; panels b, g, l, s, and w are HBTC monolayers; panels c, h, m, t, and x are BEAS-2B monolayers; panels d, I, n, o, u, and y 

are 3D HBE TLAs; and panels e, j, p, are 3D HBE TLAs without the primary antibody. Panel q is 3D NHNP cells. A 1:25 dilution of 

the cytokeratin 18 antibody was used to stain the cells in panels a-e; a 1:1500 dilution of the EMA antibody was used to stain the cells 

in panels f-i; a 1:5000 dilution of the ZO-1 antibody was used to stain the tight junctions in panels (k-n) (ZO-1 ab was already 

conjugated to Fluorescein isothiocyanate so a control lacking this primary antibody was not performed); and a 1:40 dilution of the 

antibody for a neuronal specific marker, MAP2 was used to stain cells in panels o-q. Magnification bars are shown on each 

photograph a-q. Antibodies to mucin were used to stain r-u by immunhistochemistry (pink); and an antibody to ICAM-1 was used to 

stain v-y by immunhistochemistry (light to dark brown). Original magnifications were 400X. 
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Gene expression in BEAS-2B monolayers and 3D HBE TLAs 

Cellular differentiation involves complex cellular interactions.[22] Not only do cell  

membrane junctions, extracellular matrices, and soluble autocrine and paracrine factors [23-26] 

play a significant role in tissue development, but also the spatial orientation and spatial 

relationships of the layered cells. The fact that each HBE cell has three membrane surfaces, a 

free apical surface, a lateral surface, and a basal surface[19] that interacts with mesenchymal 

cells enhances differentiation and cell-to-cell communication in epithelial cells grown in 

modeled microgravity compared to traditional monolayers. An important role of the HRE is to 

produce an innate immune response to pathogens in the airway. Transcriptional profiling results 

(Fig. 3) also indicate a higher number of genes involved in immune response, immunological 

and inflammatory diseases are upregulated in uninfected 3D HBE TLAs as compared to BEAS-

2B monolayers. Most importantly, the profile of cytokines secreted from uninfected TLAs (Fig. 

9a) parallel the profile detected in human airways as described elsewhere.[17] 

 

 

Figure 3. Higher levels of cell development, cell signaling, and cell growth as well as immune response are expressed 

in 3D HBE TLAs compared to BEAS-2B monolayers. 
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wtRSV and wtPIV3 replicate more efficiently than mutants in TLAs 

To compare the replication efficiencies of different RSV and PIV3 strains grown in 

different culture conditions, monolayers and TLAs were infected at 35°C—the upper 

temperature of the upper HRE. Culture samples were collected on different times post infection 

(pi) to quantify the virus. Peak replication of wtRSVA2 and attenuated strains cpts248/404 and 

rA2cpΔNS2, were similar in Vero and BEAS-2B epithelial cell monolayers (Fig. 4a and b). The 2 

log10 pfu/mL reduction in titer of wtRSVA2 from day 2 to 7 in Vero cells (Fig. 4a) resulted from 

destruction of the monolayer. In contrast in HBE TLAs, attenuated strains, cpts248/404 and 

rA2cpΔNS2 replicated to a peak titer of 3-4 log10  pfu/mL, significantly lower than the peak titer 

of 6 log10 pfu/mL of wtRSVA2 (Fig. 4c). Hence, a significant difference in replication of wtRSV 

and attenuated viruses was clearly differentiated in TLA cultures as in vivo.[12, 14] The fact that 

innate immunity pathways are more highly expressed in HBE TLAs than monolayers (Fig. 3) 

may play a role in attenuation. wtPIV3 (JS), Bovine PIV3 Shipping Fever virus (bPIV3 SF), and 

PIV3-cp45 each replicated to > 8 log10 pfu/mL by day 4 pi in 2D monkey kidney LLC-MK2 cells. 

Lower replication efficiency observed for PIV3-cp45 only on day 6 and 8. Host restriction of 

bPIV3 SF, however, was not observed in LLC-MK2 cells (Fig. 4d). In epithelial BEAS-2B 

monolayers, PIV3-cp45 replicated 1.5 to 2 log10 pfu/mL lower than wtPIV3 JS from day 4 to 8, 

suggesting an attenuated phenotype in this cell line; however, the replication levels of wtPIV3 

JS and bPIV3 SF were similar (Fig. 4e). In HBE TLAs, replication of JS approached 7.5 log10 

pfu/mL by day 6 pi, while PIV3-cp45 and bPIV3 SF replicated maximally to 5.5 and 3.5 log10  

pfu/mL on day 6, respectively, and to 6 log10  pfu/mL by day 10 (Fig. 4f). Similar to RSV strains, 

the attenuated PIV3 viruses replicated less efficiently than wtPIV3 in HBE TLAs. Growth 

restriction of the attenuated strains may be due to a slower progression from layer to layer in 3D 

HBE TLAs. More detached cells were observed in infections with wild type viruses than 

infections with the attenuated strains. 



 

9 
 

 

 

Innate immune response to RSV and PIV3 infection 

Table I lists the cytokines, chemokines, and colony-stimulating factors detected in cell 

culture supernatants from wild type infected BEAS-2B epithelial cells and 3D HBE TLAs in 

comparison to a limited number of nasal washes from wtPIV3-infected children. For infected 

samples, only those cytokines with mean secretion levels > twofold higher than uninfected 

samples are listed. Of the 19 tested, most of the epithelial-derived cytokines induced by wtPIV3-

infected children were also secreted by infected TLAs, except TNF-α. Of the 19 tested, most of 

the epithelial-derived cytokines induced by RSV-infected patients[27] were also secreted by 

 

Figure 4. Replication efficiencies of wtRSVA2 and wtPIV3 JS are significantly higher than attenuated strains in 3D 

HBE TLAs. Samples were collected on days 0, 2, 5, and 7 for Vero, days 0, 2, 4, 6, and 8 for LLC-MK2; days 0, 

2, 4, 6, and 8 RSV-infected BEAS-2B, days 0, 2, 4, 6, 8, and 10 for PIV3-infected BEAS-2B; and days 0, 2, 4, 6, 8, 

and 10 (pi) for TLAs. The geometric mean virus titers from three experiments  for Vero and LLC-MK2 infections and 

six to eight experiments  in 2D and 3D epithelial cells were calculated  and plotted against time after infection  in 2D 

Vero cells (a), 2D BEAS-2B (b and e), 2D LLC-MK2 (d), and 3D HBE TLAs (c and f). The error bars represent the 

standard deviations. Virus only (no cells) control is also shown in panel c. 
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infected HBE TLAs, except MCP-1 and TNF-α. It is likely non-epithelial cells contribute to the 

higher levels of TNF- α and MCP-1 in the airways of infected patients. WtRSV-infected-2D 

BEAS-2B cells secreted > twofold increases (relative to uninfected) of IL-6, IL-8, RANTES, MIP-

1α,  MIP-1-, MCP-1, and IFN-γ but not IL-1-, GM-CSF, and G-CSF as in infected TLAs. 

wtPIV3-infected BEAS-2B cells secreted > twofold increases (relative to uninfected) of IL-6, IL-

8, RANTES, and IFN-γ but not MIP-1α,  MIP-1-, IL-1-, GM-CSF, and G-CSF and IL-4 as in 

HBE TLAs. 

 

 

TLAs predict in vivo inflammatory responses 

Figure 5a illustrates the average fold increases of secreted levels of cytokines from a 

limited number of nasal washes collected from children infected with wtPIV3 or vaccinated with 

PIV3-cp45 relative to levels from normal healthy controls. The difference in levels of secreted 

IL-1-, IL-8, MIP-1α, MIP-1-, RANTES, and G-CSF between wtPIV3 and healthy controls are 

statistically significant (Table II). The difference in the levels of IL-1-, IL-8, MIP-1 α, and 

Table I 

 

         Sampleb
 

 Secreted Cytokines, Chemokines, and Colony 

Stimulating Factors
a
 

 wtRSV-infected
c
 wtPIV3-infected

c
 

2D BEAS-2B
c,d

 IL-6  MIP-1- 

IL-8  MCP-1 

RANTES  INF-γ 

MIP-1α 

IL-6 

IL-8 

RANTES 

IFN γ 

3D HBE TLAs
c,d

 IL-6  IL-1- 

IL-8  GM-CSF 

RANTES   G-CSF 

MIP-1 α 

MIP-1- 

IL-6  IL-1- 

IL-8  GM-CSF 

RANTES    G-CSF 

MIP-1 α     IL-4 

MIP-1- 

Human Nasal Wash  
ND 

IL-8                             IL-1- 
RANTES                       G-CSF 

MIP-1 α                        TNF-α 
MIP-1- 

 

 

 

a  
A total of 17 were tested using the BioPlex Human Cytokine Assay kit (BioRad) and 3 were tested 

by ELISA  

    (RANTES, MIP-1α, and INF--) 
b 

Approximately tenfold more cells were present in 3D HBE TLAs than  BEAS-2B monolayers.  
Epithelial cell numbers were not  determined for the human nasal wash samples. 

c  
The mean secretion levels of the cytokines listed were > twofold higher than corresponding mock-

infected samples or nasal washes from healthy subjects. 
d  

day 2 and/or day 8 pi 

ND= not done 
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RANTES in nasal washes from wtPIV3- and PIV3-cp45-infected children are also statistically 

significant. Importantly, the differences in cytokine levels were not significant between the PIV3-

cp45 and control nasal washes. The mean fold increases of cytokines secreted from wild type 

and attenuated PIV3- and RSV-infected TLAs from day 0 to 2 pi and 6 to 8 pi are illustrated in 

Fig. 5b and c. Similar to the cytokines present in the human nasal washes, the levels of the 

cytokines secreted from HBE TLAs were higher than the levels secreted from TLAs infected 

with bPIV3 and PIV3-cp45 and statistically significant in the day 6 to 8 samples (Table II). 

Similar results are illustrated for TLAs infected with wtRSVA2 relative to TLAs infected with 

cpts248/404 and rA2cpΔNS2. Similar to the nasal wash levels of IL-8, MIP-1α, and RANTES, 

potential biomarkers of inflammation, the differences in levels secreted from TLAs infected with 

wild type and attenuated strains are statistically significant (Table II). 

 

In contrast, the cytokine secretion levels were sometimes higher in 2D BEAS-2B cells 

infected with attenuated viruses than wild type virus (Fig. 5d and e); i.e., MIP-1α and RANTES 

in bPIV3 SF and rA2cpΔNS2 infections. Lower fold increases of these chemokines from wild 

type infected cells may be explained by cytopathic effect of day 8 but not day 2 monolayers. 

The fold increases of RANTES secretion levels were extremely high in day 2 RSV-infected 

BEAS-2B cells and, thus, graphed separately (inset). 

Table II.  Statistical Significance of Cytokine Levels in Nasal Washes, 3D HBE TLAs, and 2D BEAS-2B Cells 

 

Nasal Wash Samples IL-1β IL-6 IL-8 MIP-1α MIP-1β RANTES G-CSF GM-CSF 

wt PIV3 vs. PIV3 neg 

wt PIV3 vs. PIV3-cp45 

PIV3-cp45 vs. PIV3 neg 

0.03 

0.03 

1.000 

0.051 

0.08 

1.000 

0.018 

0.022 

0.941 

0.014 

0.045 

0.58 

0.035 

0.105 

0.592 

0.027 

0.002 

0.205 

0.049 

0.089 

0.771 

inc 

inc 

inc 

3D HBE TLA Samples* IL-1β IL-6 IL-8 MIP-1α MIP-1β RANTES G-CSF GM-CSF 

wt PIV3 vs. mock 

wt PIV3 vs. PIV3-cp45 

PIV3-cp45 vs. mock 

<.0001 

0.0001 

0.129 

0.0063 

0.0558 

0.292 

0.0009 

0.074 

0.0396 

0.0349 

0.0478 

0.708 

0.0002 

0.0056 

0.1024 

<.0001 

0.002 

0.031 

0.0009 

0.0036 

0.3845 

<.0001 

0.0024 

0.0579 

2D BEAS-2B Samples* IL-1β IL-6 IL-8 MIP-1α MIP-1β RANTES G-CSF GM-CSF 

wt PIV3 vs. mock 

wt PIV3 vs. PIV3-cp45 

PIV3-cp45 vs. mock 

0.0264 

0.0454 

0.758 

<.0001 

0.0067 

0.0001 

0.0004 

0.1122 

0.0059 

0.8603 

0.334 

0.2681 

0.098 

0.3561 

0.4114 

0.2627 

0.6652 

0.4757 

0.2487 

0.2487 

1.0000 

0.2371 

0.9464 

0.262 

mock = mock infected or uninfected 

inc = inconclusive 

* day 8 samples 
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Figure 5. Fold increases of representative cytokines secreted from wild type infected 3D HBE TLAs are 

significantly higher than secreted levels from infections with attenuated strains. (a) Fold increases of cytokines 

(IL-1-, IL-6), chemokines (IL-8, MIP-1α, RANTES) and colony-stimulating factors (G-CSF, GM-CSF) in nasal wash 

samples collected from subjects shedding wtPIV3 and  attenuated PIV3-cp45 were calculated relative to normal healthy 

controls. Statistically significant differences in levels between nasal washes collected from subjects shedding wtPIV3 and 

normal healthy controls is indicated (*); statistically significant differences in cytokine levels between nasal washes 

collected from subjects shedding wtPIV3 and PIV3-cp45 is indicated(+). Cytokines (IL-1-, IL-6), chemokines (IL-8, 

MIP-1α, RANTES), and colony-stimulating factor (G-CSF, GM-CSF) after infection with wild type and attenuated RSV 

and PIV3 virus strains were plotted as fold increases relative to corresponding mock-infected cells or uninfected cells that 

were treated similarly to infected cells without the virus; (b) Day 0-2 3D HBE TLAs (day 0 represents collection of a 

sample just after virus adsorption); (c) Day 6-8 3D HBE TLAs; (d) Day 0-2 2D BEAS-2B cells; (e) Day  6-8 2D 

BEAS-2B cells. A line was added to emphasize a twofold increase relative to mock. The fold increase in RANTES for 

RSV-infected cultures is presented in inset (d) because of the different scales. One experiment was performed with 

human nasal washes and a total of 6-8 experiments were performed in 2D BEAS-2B and 3D TLAs. The mean secretion 

levels were determined in JMP software. 
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Low secretion levels of cytokines from TLAs infected from days 0 to 2 (Fig. 5b) relative 

to days 6 to 8 (Fig. 5c) suggest an association with virus titer (Fig. 4c and 4f). Therefore, the 

Spearman’s correlation value between the cytokine secretion levels and virus titer was 

determined by plotting the log of the cytokine/chemokine concentration against the titer (in 

log10  pfu/mL) of wtRSV A2 and wtPIV3 JS on day 0, 2, and 8 pi (Fig. 6 and Table 3). As 

illustrated, the correlation is higher in HBE TLAs than BEAS-2B monolayers for all secreted pro-

inflammatory mediators tested IL-1-, IL-6, MIP-1α, RANTES, G-CSF, and GM-CSF, except for 

IL-8  in wtRSV A2 infected cultures. All the Spearman correlation values for 3D HBE TLA 

infections were statistically significant. The Spearman correlation values are generally higher for 

wtPIV3 JS infected-HBE TLAs than wtRSV A2 most likely because of its higher replication 

efficiency. The correlation of IL-6, IL-8, and RANTES secreted from wtRSV A2 infected-BEAS-

2B cells and IL-6 and IL-8 from wtPIV3 JS infected-BEAS-2B cells and virus titer was 

statistically significant. 

 

 

Table III 

 

 
Cytokines 

wtRSVA2 

BEAS-2B  3D HBE TLAs 
wtPIV3 JS 

BEAS-2B  3D HBE TLAs 

Spearman   p  Spearman   p 

value  value   value  value 
Spearman   p  Spearman   p 

value  value   value  value 
IL-1B 

IL-6 

IL-8 

MIP-1a 

RANTES 

G-CSF 

GM-CSF 

0.4686  0.498 

0.6496  0.0035 

0.7505  0.0003 

0.6441  0.0612 

0.6794  0.0019 

0.3506  0.1507 

0.3506  0.1537 

0.7142  <.0001 

0.6606  <.0002 

0.6146  0.0011 

0.7738  <.0001 

0.8432  <.0001 

0.747  <.0001 

0.7932  <.0001 

0.0493  0.8459 

0.5611  0.0154 

0.5474  0.0187 

-0.55  0.125 

-0.0994  0.7401 

-0.0234  0.9265 

-0.0234  0.9265 

0.9057  <.0001 

0.8029  <.0001 

0.8642  <.0001 

0.8519  0.0001 

0.8281  <.0001 

0.8195  <.0001 

0.8898  <.0001 
Spearman correlation value is the nonparametric r value for the 

linear correlation between the log concentration of the cytokine 

and virus titer in log10 pfu/mL. 
p value indicates statistical significance if <0.05. 
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2.0 Discussion 

Lacking large-scale in vitro cell culture models and small animals that mimic human 

respiratory virus infections and disease states has hindered the development of live attenuated 

RSV and PIV3 vaccines. For example, although 4.2 log10 pfu/mL of cpts248/404 was shed on 

average into the nasal cavities of 3- to 5-month-old infants receiving 105 pfu,
[12] only 2.2 log10 

pfu/mL[28] and 1.3 log10 pfu/mL[29] was shed by in mice and chimpanzees, respectively, after 

receiving 106 pfu. 4.3 log10 pfu/mL of rRSVA2248/404ΔSH was shed on average into the nasal 

cavities of seronegative children with a 105 pfu[30] and only 2.1 log10 pfu/mL in chimpanzees 

with a 105 pfu.[31] 4.3 log10 pfu/mL of rRSVA2248/404/1030 was shed on average into nasal 

cavities of seronegative children after a 105 pfu dose[30] and no rRSVA2248/404/1030 was 

detected in nasal turbinates of mice after a 106 dose.[28] Therefore, we engineered a novel in 

vitro model of the HRE to predict in vivo attenuation levels of cp, ts, host-range (hr), and gene 

deleted viruses. As reported here, growth of two respiratory viruses in 3D HBE TLAs and the 

Figure 6. Correlation of levels of cytokines, chemokines, and colony-stimulating factors with virus titer. The log 

concentration of cytokines on day 0, 2, and 8 for wtRSV A2 and wtPIV3  JS infections in 2D BEAS-2B cells and 3D 

HBE TLAs were plotted against the virus titer in log  pfu/mL on the same days pi using the JMP statistical program. 

The Spearman correlation value (determined in JMP) is illustrated on each graph and in Table III. Illustrated here are the 

graphs of two examples, IL-8 and RANTES. P = p value, <0.05 is statistically significant. 
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concomitant host response parallel infections of the HRE more closely than 2D epithelial cells. 

Differences in structural organization and state of differentiation affect the physiology of 

epithelial cells[32] grown as monolayers or TLAs. As in the HRE, the multiple cell types in the 

TLAs are organized in layers. Intrinsic to the higher complexity of TLAs and different membrane 

interactions is a cascade of events essential not only to architecture but also to differentiation.[19] 

Therefore, TLAs display hallmarks of in vivo epithelia, express markers of differentiated 

epithelial cells, and induce cell growth, and cell signaling pathways not present in 2D cells. Cell 

communication through intercellular junctions, paracrine factors, and cell adhesion molecules 

are important to epithelial function.[20] Thus, TLAs represent a more physiologically relevant 

model of the HRE than 2D epithelial cells. One difference is that TLAs produce microvilli instead 

of the cilia of the HRE. Since cilia play an important role in virus infection,[33] this difference 

between the HBE TLAs and HRE may not be significant since virus infections in HBE TLAs 

parallel in vivo RSV infections (Deatly et al, submitted). 

This novel 3D HBE TLA model has some significant advantages with respect to existing 

in vitro cultures of the HRE, such as primary cell and air liquid interface cultures. The capability 

for large-scale production and prolonged culture and infection times provide the ability to 

remove aliquots for multiple analyses at different times pi without terminating the experiment, 

thus eliminating the cost and uncertainly of restarts. The ease of maintaining consistent cultures 

allows comparison of data from experiments of different batches of HBE TLAs. Our polarized 

multicellular HBE TLA model of cells from the human bronchi and tracheae better mimics the 

upper respiratory tract than the 3D monoculture of alveolar A549 epithelial cells.[34] 

A hallmark of RSV and PIV3 infection in traditional monolayer cultures is the formation of 

syncytial or large multinucleated cells resulting from cell fusion. Syncytia are not always 

detected in the respiratory tract of fatal RSV cases[35] and have not been observed by 

Transmission Electron Microscopy of HBE TLA tissue sections or in the air liquid interface 

culture infections.[33] In polarized epithelia, expression of the fusion protein is restricted to the 

apical surface; therefore, it is not able to interact with adjacent cells. Syncytia formation may be 

more prevalent in infections of monolayers or thin epithelial layers in vivo. Therefore, we 

hypothesize paramyxovirus infections in HBE TLAs may mimic in vivo infections more closely 

than infections in traditional monolayers. 

Small Phase I clinical trials are performed to evaluate the safety and immunogenicity of 

vaccine candidates. Three criteria of safety include attenuation, phenotypic/genetic stability, 



 

16 
 

and clinical symptoms of respiratory disease. In clinical trials, cpts248/404 and PIV3-cp45 were 

attenuated and stable when 105 pfu were administered to children and infants.[12,13] rA2cpΔNS2 

was over-attenuated in adults when intranasally administered even at 107 particle-forming 

units.[14] The bPIV3 SF is attenuated in rhesus macaques[15] and most likely hr restricted in 

humans as the bPIV3 Kansas strain.[36] Like in vivo, attenuated RSV and PIV3 strains produce 

significantly lower titers than respective wild type viruses in TLAs at 35°C—the upper 

temperature of the upper HBE.[11] Although attenuated RSV strains cpts248/404 and 

rA2cpΔNS2 replicated at lower titers (0.5 and 0.9 log10 pfu/mL, respectively) than wtRSVA2 in 

primary submerged human adenoid epithelial cells at 35°C,[37] virus titers of these strains were 2 

to 3 log10 pfu/mL lower in HBE TLAs. Most likely improved cell communication and cell 

signaling in TLAs facilitate the differentiation of replication levels of wild type and attenuated 

viruses not observed in 2D cells or air liquid interface cultures. 

A fundamental role of the HRE is to prevent microbial invasion. Pro-inflammatory 

mediators in vivo[17] recruit inflammatory cells that clear the virus by phagocytosis. Similarities in 

the profiles of pro-inflammatory mediators between epithelial cells in vitro and in vivo indicate 

that epithelial cells are likely the primary secretors of these mediators even prior to microbial 

invasion. 

Although disease pathogenesis is generally associated with replication efficiency and 

cytotoxicity of the pathogen, severe disease states resulting from RSV (and most likely PIV3) 

are due to the inflammatory response to the virus.[38] As illustrated in Fig. 7, the innate immune 

response of the HRE to RSV results in secretion of cytokines (IL-1, TNF-α, IL-6, and IL-11), and 

chemokines (IL-8, MIP-1α, RANTES, and MCP−1)[27,38-42] (Fig. 7b). These pro-inflammatory 

mediators elicit inflammatory cells.[43] In mild disease states, inflammatory cells, primarily 

neutrophils, eosinophils, and macrophages, phagocytose virus to clear the airway and as part of 

the process produce an antiviral response (Fig. 7c). Severe disease states are characterized by 

airways constricted with inflammatory cells (Fig. 7d), shed epithelial cells, and mucus 

accumulation. 
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Elevated levels of MIP-1α, MCP-1, RANTES, and IL-8 are associated with human RSV 

disease and may correlate with disease severity.[44-50] IL-8 is the most potent chemoattractant 

for neutrophils and comprises up to 93% of the cells in the airway lumen in bronchiolitis cases. 

RANTES and MIP-1α, potent chemoattractants of eosinophils comprising up to 8% of the cells 

in the airway, are associated with bronchospasms.[38,51] Higher levels of these pro-inflammatory 

chemokines may elicit higher numbers of inflammatory cells, thus increasing the likelihood for 

constriction of the airways, especially in infants.[52] In this case, elevated levels of IL-8, MIP-1α, 

MCP-1, and RANTES may serve as biomarkers for clinical inflammation. In the current study, 

wtRSV and wtPIV3 induce statistically higher secretion levels of pro-inflammatory mediators 

than attenuated strains in TLAs from day 6 to 8, paralleling the results from nasal washes 

collected from subjects with wtPIV3 infections and vaccinees that received PIV3-cp45 

intranasally. Furthermore, the low levels of pro-inflammatory mediators in nasal washes from 

PIV3-cp45 vaccinees and healthy controls were not statistically different, correlating with a lack 

 

Figure 7. A diagram of the stages of RSV-infected HRE (a) before RSV infection (cytokines in the first column were tested in 

our assays); (b) RSV infection and the cytokines and chemokines induced in response to infection and the inflammatory cells 

they recruit[43]; (c) a mild disease state in which the inflammatory cells clear RSV from the airway by phagocytosis; (d) a severe 

disease state in which the inflammatory cells constrict the airways. 
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of clinical symptoms of inflammation of the vaccines.[12,13] Therefore, low cytokine secretion 

levels from cpts248/404 and rA2cpΔNS2-infected TLAs are also consistent with clinical 

observations in Phase I studies since these vaccinees also lacked symptoms of 

inflammation.[12,14] Especially noteworthy are the significant differences in secretion levels of IL-

8, MIP-1α, and RANTES between wild type and attenuated strains in nasal washes since their 

levels were associated with severity of RSV disease in humans. Statistically significant 

differences between the cytokine levels in infected and uninfected TLAs are more similar to 

infected and uninfected nasal washes than 2D BEAS-2B cells. One difference is the secretion of 

GM-CSF from TLAs that is not detected in nasal washes collected from wtPIV3-infected 

subjects. Since epithelial or mesenchymal cells secrete GM-CSF, perhaps a factor not 

expressed in the TLAs inhibits induction of GM-CSF in the HRE. 

Since attenuation level and low secretion levels of pro-inflammatory cytokines of 

cpts248/404, rA2cpΔNS2, and PIV3-cp45 in TLAs correlate with safety in clinical trials, the low 

replication efficiency and low secretion levels of pro-inflammatory mediators of bPIV3 SF in 

TLAs predict that this strain would also be safe in humans. Indeed a similar strain, bPIV3 

(Kansas), was safe in humans.[36] In contrast, similar replication efficiency and higher secretion 

levels of MIP-1α and RANTES in infected BEAS-2B monolayers relative to wtPIV3 infections 

would suggest that bPIV3 SF and rA2cpΔNS2 would not be safe in humans. 

In summary, the parallels between cell physiology, viral growth kinetics, and pro- 

inflammatory mediator profiles substantiate the physiological relevance of TLAs to human 

respiratory epithelia compared to 2D BEAS-2B cells. The 3D HBE TLA model offers an 

advantage over monolayer cultures in predicting the level of attenuation and the inflammatory 

response of respiratory viruses in humans. Therefore, RSV and PIV3 infections in HBE TLAs 

may mimic in vivo infections more closely than infections in traditional monolayers. The data 

indicate HBE TLAs may be better suited to evaluate RSV and PIV3 vaccine candidates prior to 

clinical trials. 
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3.0  Methods 

Cells 

Mesenchymal cells (HBTC) from human bronchi and tracheae were obtained from three 

donors through Cambrex Biosciences (Walkersville, MD). LLC-MK2 and BEAS-2B epithelial 

cells[53] were obtained from ATCC (Manassas, VA). BEAS-2B cells were used instead of 

primary cells to provide consistency from batch to batch. BEAS-2B and HBTC cells were 

maintained in GTSF-2 medium with 7% fetal bovine serum[9] in human fibronectin coated flasks 

(BD Biosciences, San Jose, CA). Vero, HEp-2, and LLC-MK2 cells were grown at 37°C in 

Eagle’s modified minimum essential medium supplemented with 2mM non-essential amino 

acids, 100 units penicillin, 100 μg/ml streptomycin, 0.25 μg/ml amphotericin B, 10% fetal bovine 

serum, 2mM L-glutamine, and 25mM HEPES buffer (Gibco-BRL, Gaithersburg, MD). 

 

3D TLA cultures 

To construct 3D HBE TLA cultures, HBTC cells from a monolayer culture were seeded at 

2 x 105 cells/mL into a 55-mL rotating wall vessel (RWV) (Synthecon, Houston, TX) with 4-5 

mg/mL of Cytodex-3 microcarriers, type I collagen-coated cyclodextran microcarriers (Pharmacia, 

Piscataway, NJ) at 35°C. Cultures were allowed to grow for a minimum of 48 hours before the 

medium was changed. BEAS-2B cells were seeded at 2 x 105 cells/mL 4 to 6 days after HBTC-

Cytodex 3 microcarrier aggregates were formed. Thereafter, approximately 65% of the media was 

replaced every 20 to 24 hours. As metabolic requirements increased, the glucose concentration in 

GTSF-2 medium was increased to 200 mg/dL. TLA cultures were grown in RWV to 1 to 2 mm in 

diameter using the rotary cell culture system (Synthecon, Houston, TX) at 35°C with appropriate 

rotation rate for aggregate suspension. Cell numbers were determined after treating the TLAs with 

2000U/mL type I collagenase (Invitrogen, Carlsbad, CA) at 37°C for 10 minutes. 

 

Viruses 

wtRSV A2,[54] cpts248/404,[55] wtPIV3 JS,[56] and PIV3-cp45[56] have been previously 

described. cpts248/404 contains five mutations in the biological strain derived by cold passage 

(cp) and the 248 and 404 temperature sensitive (ts) mutations were produced by exposure to 5-

fluorouracil. The 404 ts mutation is in the gene start of the matrix M2 gene and 248 is in the L 

polymerase gene.[57] The growth of cpts248/404 is restricted at 37°C (> 2 log10 pfu/mL lower 

than the titer at 32°C). rA2cpΔNS2 virus was derived by deleting the NS2 (interferon antagonist) 

gene from rA2cp.[31,58] PIV3-cp45 is a cold-adapted, ts virus that differs from wtPIV3 JS by 15 



 

20 
 

mutations.[59] bPIV3 SF is hr restricted in human cells. Recombinant bovine PIV3 SF was 

constructed by inserting each of the individual genes into a modified Bluescript vector (pFLII,) 

by RT-PCR (see Supplementary Methods online). Using modification of the protocol previously 

described,[60] recombinant bPIV3 SF was recovered from cDNAs. This procedure facilitates 

virus rescue from Vero cells without calcium phosphate precipitation or recombinant vaccinia 

virus helper (Witko et al, personal communication). Plasmids encoding support proteins, N, P, 

and L were based on PIV3-cp45 sequence rather than bPIV3 SF sequence and were the only 

plasmids used for the rescue in addition to those containing the full-length clones and T7 RNA 

polymerase. All viruses were purified by gradient ultracentrifugation described elsewhere.[60,61] 

 

Scanning Electron Microscopy of 3D HBE TLAs 

After removal from the reactor vessels, samples were washed once with calcium- and 

magnesium-free PBS. Day 31 to 35 samples were suspended in a buffer containing 3% 

glutaraldehyde and 2% paraformaldehyde in 0.1 M cacodylate buffer at pH 7.4[45] (Luna 1968), 

then rinsed for 5 minutes with cacodylate buffer three times and post-fixed with 1% osmium 

tetroxide (Electron Microscopy Sciences, Fort Washington, PA, USA) in cacodylate buffer for 1 

hour. Samples were then rinsed three times for 5 minutes each with distilled water and then 

treated for 10 minutes with a Millipore (Millipore Corp., Bedford, MA, USA) (0.2-μm)-filtered, 

saturated solution of thiocarbohydrazide (Electron Microscopy Sciences), then washed five 

times for 5 minutes each with distilled water and fixed with 1% buffered osmium tetroxide for 10 

minutes. This last step was necessary to prevent the microcarriers from collapsing. Samples 

were then rinsed with distilled water three times and dehydrated with increasing concentrations 

of ethanol, followed by three changes in absolute methanol. After transfer to 1,1,1,3,3,3-

hexamethyldisilazane (Electron Microscopy Sciences), samples were allowed to soak for 10 

minutes, drained, and air-dried overnight. Dried samples were sprinkled with a thin layer of 

silver paint on a specimen stub, dried, coated by vacuum evaporation with platinum-palladium 

alloy, and then examined in the JEOL T330 scanning electron microscopy at an accelerating 

voltage of 5 to 10 kV. 

 

Transmission Electron Microscopy of 3D HBE TLAs 

Day 31 to day 35 HBE TLA samples were washed three times with 0.1 M sodium 

cacodylate buffer pH 7.4 (#11652, Electron Microscopy Science, Port Washington, PA, USA) 

then fixed in a solution of 2.5% gluteraldehyde-formaldehyde in 0.1 M sodium cacodylate 

buffer (#15949, Electron Microscopy Science, Fort Washington, PA, USA) 0.3 M sucrose 
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(Sigma, St. Louis, MO, USA) – 1% DMSO (Sigma, St. Louis, MO, USA) pH 7.4 (Electron 

Microscopy Science, Fort Washington, PA, USA) overnight at 4°C. The fixed tissue was washed 

three times in 0.1 M sodium cacodylate buffer, pH 7.4 buffer, post-fixed stained in 0.1 M tannic 

acid (#21700, Electron Microscopy Science, Port Washington, Pa, USA) in 0.1 M sodium 

cacodylate pH 7.4 for 3 hours at room temperature. The tissue samples were washed three 

times in buffer, and then fixed again in 1.0 M osmium tetroxide (#19152, Electron Microscopy 

Science, Port Washington, PA, USA) in cacodylate buffer pH 7.4 for 1.5 hours at room 

temperature. Samples were dehydrated in a series of graded ethanol, and then embedded in 

EMbed - 812 resin (#14120, Electron Microscopy Science, Port Washington, PA, USA). 

Samples were sectioned at yellow-silver (700 A), mounted on Ni grids and examined under a 

JEOL JEM-1010 transmission electron microscope (JEOL, USA) at 80 kV. 

 

Expression of epithelial markers by confocal microscopy 

Normal human lung cryostat sections were obtained from BioChain Institute (Hayward, 

CA). 2D BEAS-2B and 2D HBTC cells were seeded onto coverslips and fixed with 4% 

paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA, cat #15710) when 70% - 80% 

confluent for 30 minutes. Day 35 3D HBE TLAs were fixed in 4% paraformaldehyde for 60 

minutes. All cells/tissues were incubated with the primary antibodies including EMA (Dako 

Cytomation, Carpinteria, CA cat #N1504), mouse anti-human cytokeratin 18, (Dako 

Cytomation, Carpinteria, CA cat #M7010), mouse anti-human CD54 (intercellular adhesion 

molecule-ICAM-1) (Dako Cytomation, Carpinteria, CA, cat #M7063, Clone 6.5B5) or mouse 

anti-MAP2 (Chemicon, Temecula, CA, cat #MAB3418) overnight at 4°C. Fluorescein 

isothiocyanate  conjugated mouse anti-ZO-1 (Invitrogen – formerly Zymed, Eugene, OR, cat 

#33-9111) was incubated at room temperature for 2 hours. After washing five times with 1 x 

DPBS (Mediatech, Herndon, VA, cat #20-031-CV), the samples were incubated with the 

secondary antibody  Alexa Fluor 555 donkey anti-mouse IgG (H + L), (Invitrogen  or Molecular 

Probes, Eugene, OR, cat #A31570) or the Alexa Fluor 488 goat anti-mouse IgG (H + L), 

(Invitrogen or Molecular Probes, Eugene, OR, cat #A11029). The samples were counterstained 

with TO-PRO-3 iodide (Invitrogen or Molecular Probes, Eugene, OR, cat #T3605) to stain the 

nuclei. 3% BSA (Sigma-Aldrich, St Louis, MO, cat #A2153-50G) and 0.25% Triton (Sigma-

Aldrich, St Louis, MO, cat #061K0126) in 1X PBS were used as Fc block and antibody diluents. 

Samples were mounted onto microscope slides using coverslips and polyvinyl alcohol (PVA, 

Sigma-Aldrich /Fluka, Biochemika, St Louis, MO, cat #10981) mounting medium. A Leica TCS 

http://en.wikipedia.org/wiki/Isothiocyanate
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SL Confocal Scanner with Leica DMI RE2 inverted Microscope was used to scan all samples. 

 

Expression of epithelial markers by immunohistochemistry 

TLAs designated for histological and immunohistological staining were washed three 

times with gentle agitation for 5 minutes each in 1x PBS without Mg+2  and Ca +2 (Cellox 

Laboratories Inc, St. Paul, MN, USA) to remove foreign protein residues contributed by the 

growth media. The TLAs were then transferred to 50 mL polystyrene tubes containing 10% 

formalin buffered in PBS (Electron Microscopy Service, Ft. Washington, PA, USA). After an 

overnight incubation at 4°C, the fixed cells were washed three times in PBS. The TLAs were 

centrifuged at < 1000g to concentrate the bead-cell assembly, and 1 mL of warm noble agar 

was added for additional stabilization. TLAs were embedded in paraffin blocks, and thin 

sections were cut at 3-5 mm on a Micron HM315 microtome (Walldorf, Germany). The sections 

were deparaffinized by standard procedure, and the antigens were retrieved by protein kinase 

or citrate and blocked with a normal rabbit or mouse sera – 0.5% Tween 20 blocking solution. 

The antibody for mucin was used neat and the antibody for ICAM-1 was diluted 1:100 in the 

blocking solution and incubated on sections for 9 to 30 minutes, rinsed with distilled water and 

either anti-mouse, anti-goat, or anti-rabbit-conjugated horse radish peroxidase secondary 

antibody (Dako Envision System) was applied using an automated immunohistochemical 

stainer (Dako, Carpintaria, CA, USA). Slides were examined by a Zeiss Axioskop (Hamburg, 

Germany) microscope and images captured with a Kodak DC 290 Zoom (Rochester, NY, USA) 

digital camera. Brown stain indicates positive peroxidase stains for ICAM-1. Pink stain for mucin 

induces a positive mucicarmine  stain. Immunocytochemistry of monolayer cultures were 

prepared as outlined previously.[9] Briefly, glass microscope slides (Rite-On, Clay Adams cat 

#3050) were placed in 150-mm Petri dishes (Fisher cat #25030-150). Cells were added (1x 103 

cells/mL) and incubated at 35.5°C for 48 hours. Slides were removed and washed two times 

with calcium- and magnesium-free PBS (Cellos Laboratories, Inc., St. Paul, MN) and post-fixed 

with 10% buffered formalin (Electron Microscopy Service, Ft. Washington, PA). 

 

Host transcriptional profiling data analysis 

RNA isolation, labeling, and hybridization: Total RNA was extracted from 3D HBE 

TLAs (how many and what day post initiation) and BEAS-2B monolayers (how many and what 

day post culture initiation) with TriZol reagent (Invitrogen, Carlsbad, CA) and further purified 

with RNeasy mini kit (Qiagen, Valencia, CA) following the manufacturer’s protocol. Integrity of 

the RNA was examined by electrophoresis in a 1% agarose gel, and the concentration was 
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determined by ultraviolet (UV) absorbance at 260 nm. Five μg of total RNA from virus- or mock-

infected samples was incubated at 70°C for 10 minutes with oligo-dT containing a T7 RNA 

polymerase promoter sequence. The first strand cDNA was synthesized with SuperScript II for 1 

hour at 50°C; the second strand with E. coli DNA polymerase, E. coli DNA ligase, and T4 DNA 

polymerase for 3 hours at 16°C. Double-stranded (ds) cDNA was purified with MultiScreen  

PCR filter plate (Millipore, Billerica, MA) and eluted with 25 μL 10mM Tris buffer. Twenty μL of 

eluted ds cDNA was used to synthesize cRNA for 16 hours at 37°C with T7 RNA polymerase 

(Epicenter, Madison, WI) and biotin-CTP/biotin-UTP (Perkin Elmer, Boston, MA). The cRNA 

was purified with MultiScreen PCR filter plate and quantified by UV absorbance at 260 nm. Ten 

μg of cRNA was fragmented and hybridized to Affymetrix HG-U133A chips according to the 

Affymetrix GeneChip Expression Analysis Technical Manual. In brief, cRNA was hybridized to 

the GeneChip for 16 hours at 45°C in a 200 μL Saline-Sodium Phosphate-EDTA buffer cocktail 

containing herring sperm DNA, bovine serum albumin, and a known amount of standard curve 

spike-in transcript pool.[62] GeneChips were stained with strepavidin-conjugated phycoerythrin  

(SAPE, Invitrogen, Carlsbad, CA), followed by goat biotinylated anti-strepavidin (Vector 

Laboratories, Burlingame, CA), and a second round of SAPE staining was performed for signal 

amplification. After staining, fluorescent intensity was quantified using the Affymetrix GeneChip 

Scanner; the array image was captured and processed into signal intensity with the Affymetrix 

Microarray Suite 5.0. 

Data filtering, analysis, and reduction: The fluorescent intensities of all unique gene 

identifiers on the GeneChips were normalized based on the hybrid method of GeneChip scaled 

average signal (with constant mean assumption) and spike-in standard curve transcripts.[62] 

Unique identifiers were then filtered to those with normalized intensity higher than 10 ppm in at 

least two of the triplicate samples for each treatment condition. For each identifier in the filtered 

set, mean log-transformed expression levels for the treatment conditions were subject to 

analysis of variance (ANOVA) methods. To control the false discovery rate (FDR), p-values of 

each unique identifier were adjusted by a previously described algorithm.[63] Identifiers with FDR 

≤ 0.05 and ≥ 1.95-fold change over mock-infected HBE TLAs were further analyzed for their 

function with the Gene Ontology tool[64] in Spotfire 8.0 (Somerville, MA) or NETAFFX web tool 

(Affymetrix, Santa Clara, CA). 

The global functional analyses were generated through the use of Ingenuity Pathways 

Analysis (Ingenuity® Systems, www.ingenuity.com). The Functional Analysis identified the 

http://www.ingenuity.com/
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biological functions and/or diseases that were most significant to the data set and were 

associated with biological functions and/or diseases in the Ingenuity Pathways Knowledge Base 

were considered for the analysis. Fischer’s exact test was used to calculate a p-value 

determining the probability that each biological function and/or disease assigned to that data set 

is due to chance alone. 

 

In vitro virus inoculation and titration 

Confluent monolayer BEAS 2B and LLC-MK2 cultures were inoculated in T25 flasks with 

indicated viruses at multiplicity of infection (MOI) of 1. Confluent monolayer Vero cell cultures 

were inoculated at MOI of 0.1 since the plaquing efficiency is tenfold higher in Vero cells. The 

outer layer of 20-day-old 3D HBE TLAs (1- to 2-mm diameter) represent about 10% of the tri-

culture. Therefore, TLAs were inoculated at a MOI of 0.1 to achieve an effective MOI of 1 for the 

cells on the outer surface. After virus absorption at room temperature for 1 hour, monolayers 

and TLA cultures were washed three times with DPBS (Invitrogen, Carlsbad, CA) and fed with 

media specified above. All air bubbles were removed from the RWV before rotation to eliminate 

shearing of the cells.[10] Approximately 65% of the culture media was replaced every 48 hours 

for both monolayer and TLA cultures. For virus titration, samples were collected on days 0, 2, 5, 

and 7 for Vero cultures, on days 0, 2, 4, 6, and 8 for LLC-MK2 and RSV-infected BEAS-2B 

cells, and 0, 2, 4, 6, 8, and 10 for PIV3-infected BEAS-2B and 3D HBE TLAs. For RSV titration, 

the entire monolayer cultures or 1 mL of the TLA cultures were flash-frozen with 1 x SPG. RSV 

titer was determined by immunostaining infected HEp-2 cells at 32°C as previously described. 

Titers of PIV3 viruses were determined in LLC-MK2 cells with medium overlay containing 0.8% 

agar at 32°C as previously described[65] except that plaques were visualized by an immunostain 

assay described previously[66] using anti-human  PIV3 HN and F antibodies. 

 

Human nasal wash samples 

A clinical trial was performed to evaluate the transmission potential of PIV3-cp45 from 

South African vaccinees 4 to 48 months of age to seronegative playmates. In this double-blind 

study, subjects received 105 pfu of PIV3-cp45 or placebo by intranasal administration.[67] Nasal 

washes (20 mL) were collected on days 0, 3, 5, 7, 10, 12, 14, 17, 19, and 21 and also on any 

illness day. After completion of the virology analysis, a limited number of nasal wash samples 

were available to test for cytokine expression. Nasal wash samples from two placebos and two 

day 0 (samples collected right before immunization) samples from two vaccinees represent the 

four normal healthy controls. Nasal washes collected from two vaccinees shedding virus on day 
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5 and 7 and 7 and 10 represent the vaccine samples. Nasal washes collected from three 

subjects that developed illness from a natural wtPIV3 virus infection shed virus only on days 14, 

17, and 19 (A); 7, 10, and 12 (B); and day 12 and 14 (C) represent wtPIV3 samples. Subject B 

had an adenovirus infection on days 0, 3, and 5 and Subject C had an enterovirus infection on 

day 0; however, wtPIV3 was the only adventitious agent detected in the samples tested for 

cytokines. These three subjects shedding wtPIV3 presented symptoms of upper respiratory 

tract infections, fevers, and coughs. No clinical symptoms or adventitious agents were reported 

for the normal healthy controls or vaccinees on the days selected for cytokine analysis. 

 

Quantifying cytokines 

Cytokine concentrations of uninfected and infected 2D and 3D culture supernatants, as 

well as nasal washes from healthy and PIV3-infected subjects, were determined using the 

Bioplex 17plex human cytokine assay kit (BioRad, Hercules CA) following the manufacturer’s 

protocol. These cytokines include IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12 (p70), IL-13 and 

IL-17, TNF-α, IL-1β, MCP-1, MIP1-β, GM- CSF, G-CSF, and IFNγ. Concentrations of RANTES 

(Regulated upon Activation, Normal T cell-Expressed and -Secreted) and MIP-1α (Macrophage 

Inhibitory Factor 1-α) were determined by ELISA (R&D System, Minneapolis, MN). The 

supernatants analyzed represent cytokine secretion in 48-hour periods collected on day 0, 2, 

and 8 pi. The mean cytokine secretion concentration was determined in three experiments for 

MIP-1α and at least six experiments for the other cytokines. The limit of detection in the assays 

was 2 pg/mL for RANTES, 50 pg/mL for IL-6, G-CSF and GM-CSF, and 10 pg/mL for IL-1β,  IL-

2, IL4, IL-5, IL-7, IL-8, IL-10, IL-12 (p70), IL-13, IL-17, MIP-1α, MIP-1β, MCP-1, INFγ, and TNF-

α. The cytokine concentrations were log10 transformed before analysis. Data were analyzed 

with Spotfire 8.0 (Spotfire Inc, Somerville, MA) to determine consistency and reproducibility. 

JMP 5.11 (SAS Institute Inc., Cary, NC) was used for statistical analysis. Cytokines from 

uninfected cells were determined to be secreted if the concentrations of >50% of the assay 

samples tested were above the detection limit. The fold increase of a cytokine was determined 

by the ratio of the mean cytokine concentration secreted from infected cultures (or nasal 

washes) to the corresponding mean cytokine concentration of uninfected cultures (or nasal 

washes). Statistical significance of cytokine levels in nasal washes in the 3D HBE TLAs and 2D 

BEAS- 2B cells illustrated in Table II were performed by SAS analysis.  
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4.0  Supplementary Methods 

Construction of rbPIV3 Shipping Fever 

The full-length cDNA clone of the bPIV3 SF genome was created from eight cDNA 

fragments of the genome, corresponding to the six genes (N, P, M, F, HN, & L) as well as the 3’ 

leader and the 5’ trailer, which were cloned separately and then joined together in one 

expression vector. All SF gene fragments (except L) were obtained as single fragments by RT-

PCR amplification using RNA extracted from LLC-MK2 cells (ATCC Number CCL-7) infected 

with bovine parainfluenza virus 3, strain SF-4 (ATCC Number VR-281) as template. The 

individual inserts were cloned into a modified Bluescript vector (pFLII, see below), except for the 

SF L gene, which was amplified and cloned in three pieces into pBluescript SK+ prior to cloning 

into the pFLII vector. The full-length clone was created by sequentially piecing the eight 

fragments together using unique restriction enzyme (RE) sites that were engineered on to the 

ends of the cDNA fragments during RT-PCR. 

The first cDNA fragment, leader, encompassed genomic nucleotides 1 through 77 and 

had T7 RNA polymerase promoter sequence placed directly prior to the first nucleotide, a Not I 

RE site upstream of the promoter, and an Age I RE site at nucleotides 72 to 77 (seven 

nucleotides after the N gene start signal) during RT-PCR. The second fragment, N, 

encompassed nucleotides 72 through 1659, overlapped the leader fragment at the Age I RE 

site, and contained a naturally occurring Spe I RE site at nucleotides 1654 to 1659 that 

embodies the N translation stop signal. The third fragment, P, encompassed nucleotides 1654 

through 3594, overlapped the N fragment at the SpeI RE site, and had an engineered SalI site 

at nucleotides 3589 to 3594. The fourth fragment, M, encompassed nucleotides 3589 through 

4831, overlapped the P fragment at the SalI RE site and had an engineered NheI RE site at 

nucleotides 4826 to 4831. The fifth fragment, F, encompassed nucleotides 4826 through 6701, 

overlapped the M fragment at the NheI RE site, and had an engineered NruI RE site at 

nucleotides 6695 to 6700. The sixth fragment, HN, encompassed nucleotides 6695 through 

8542, overlapped the F fragment at the NruI RE site, and had an engineered RsrII RE site at 

nucleotides 8535 to 8541. The seventh fragment, L, once completed, encompassed nucleotides 

8535 through 15371, overlapped the HN fragment the RsrII RE site, and had an engineered 

AvrII RE site at nucleotides 15366 to 15371. The eight fragment, trailer, encompassed 

nucleotides 15366 through 15456, overlapped the L fragment at the AvrII RE site, and had 26 
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nucleotides of a ribozyme site added downstream of the trailer with a NarI RE site after these 26 

bases. 

The majority of the fragments were amplified using primers of 29 to 38 nucleotides in 

length that matched the published bPIV3 SF sequence (GenBank Assenssion Number 

AF17865) at either end of the fragment except where indicated to create the RE sites mentioned 

above. In most cases, no more than one nucleotide was changed, but to create the RsrII site, 

three nucleotides were altered. The two exceptions with regard to the primer lengths were those 

used to amplify the start of the leader and the end of the trailer. The leader primer was 64 

nucleotides in length, and, as previously described, the 5’ end of that primer contained the T7 

RNA polymerase promoter, sequence adjacent to the start of the bPIV3 SF genome, and a NotI 

site upstream of the promoter sequence (AGATATGCGGCCGCTAATACGACTCACTATAGG). 

The primer used to amplify the end of the trailer was 93 nucleotides in length and the 3’ end 

contained part of the ribozyme sequence found in pFLII and the NarI site 

(CCAGCCGGCGCCAGCGAGGAGGCTGGGACCATGCCGGCC). The T7 promoter sequence 

and ribozyme where positioned so that RNA transcription with T7 and a cleavage of the RNA by 

the ribozyme resulted in an RNA identical to the bPIV3 SF genome. 

As mentioned previously, the L gene was cloned into pBluescript SK+ in three 

fragments. These fragments, designated L1, L2, and L3, corresponded to genomic nucleotides 

8535 through 11195, 11190 through 12969, and 12964 through 15371, respectively, and were 

put together to recreate L within the framework of the Bluescript plasmid sequentially using the 

RE sites in the following order: EagI – XbaI, XbaI – PstI, and PstI - KpnI. The XbaI and PstI RE 

sites are naturally occurring within the L open reading frame at nucleotide positions 11190 to 

11195 and 12964 to 12969, respectively. A second XbaI RE site occurs in the L open reading 

frame at nucleotides 13753 to 13758 necessitating that the L3 fragment be placed into the L 

clone last. The EagI RE site, with an RsrII RE site seven nucleotides downstream, and the KpnI 

RE site, with an AvrII RE site 12 nucleotides downstream, were engineered into the cDNAs 

during RT-PCR for use in cloning into pBluescript. The entire L fragment was then removed 

from pBluescript using the RsrII and AvrII RE sites and placed into pFLII already containing the 

trailer fragment. The vector used as the backbone plasmid for the full-length  cDNA, pFLII, was 

based on the previously described pFL vector used to clone full-length RSV.[60] The pFL vector 

was altered to remove an AgeI site that occurred seven nucleotides after the T7 terminators by 

digesting with AgeI RE enzyme, blunting the resultant digestion product with T4 DNA 
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polymerase, and re-ligating the plasmid. The pFLII multiple cloning site was introduced into pFL 

through PCR using the age I RE minus plasmid as the template. The pFLII multiple cloning site 

contains the following RE site I order Not I, Age I, Spe I, Sal I, Nhe I, Nru I,  Rsr II, and Avr II. 
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